考虑电磁干扰的差动式电容力矩传感器动态校准方法中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>考虑电磁干扰的差动式电容力矩传感器动态校准方法

考虑电磁干扰的差动式电容力矩传感器动态校准方法

320    2024-08-28

¥0.50

全文售价

作者:王宽田1, 覃琴1, 罗梦霞1, 梁世华2

作者单位:1. 桂林电子科技大学海洋工程学院,广西 北海 536000;
2. 桂林理工大学信息科学与工程学院,广西 桂林 541004


关键词:电磁干扰抑制;差动式电容力矩传感器;动态校准;动态标定


摘要:

在差动式电容力矩传感器校准过程中,受设备电磁干扰的影响,造成校准结果存在较大偏差。为解决这一问题,在考虑电磁干扰的前提下,提出差动式电容力矩传感器动态校准方法。在差动式电容力矩传感器存在电磁干扰的情况下,采用小波变换方法抑制传感器中的电磁干扰。通过差动式电容力矩传感器的组成结构构建参数化数学模型,获取动态激励和结构响应两者之间的频域传递关系,利用最小二乘法分析传递函数的频域几何关系式,对传感器展开动态解耦和动态补偿。通过冲击剪断装置形成的力矩信号对传感器动态标定,利用检测电路测量阶跃信号对标定结果校准,完成差动式电容力矩传感器动态校准。实验测试结果表明,所提方法可以获取满意的动态校准结果。


dynamic calibration method of differential capacitive torque sensor considering electromagnetic interference
wang kuantian1, qin qin1, luo mengxia1, liang shihua2
1. ocean engineering college, guilin university of electronic technology, beihai 536000, china;
2. college of information science and engineering, guilin university of technology, guilin 541004, china
abstract: during the calibration process of differential capacitive torque sensor, the electromagnetic interference of the equipment causes a large deviation in the calibration results. in order to solve this problem, the dynamic calibration method of differential capacitance torque sensor is proposed under the premise of electromagnetic interference. in the case of electromagnetic interference in the differential capacitance torque sensor, the wavelet transform method is used to suppress the electromagnetic interference in the sensor. a parametric mathematical model was built by the structure of the differential capacitance torque sensor, and the frequency domain transfer relationship between the dynamic excitation and the structural response was obtained. the frequency domain geometric relation of the transfer function was analyzed by the least square method, and the dynamic decoupling and compensation of the sensor were developed. the dynamic calibration of differential capacitive torque sensor was completed through the torque signal formed by the impact shear device and the step signal measured by the detection circuit was used to calibrate the calibration results. experimental results show that the proposed method can obtain satisfactory dynamic calibration results.
keywords: electromagnetic interference suppression;differential capacitive torque sensor;dynamic calibration;dynamic calibration
2024, 50(8):164-170  收稿日期: 2023-05-17;收到修改稿日期: 2023-08-29
基金项目: 国家自然科学基金项目(41562018);广西创新驱动发展专项(aa19254016);2021教育部产学合作协同育人项目(202102371052)
作者简介: 王宽田(1986-),男,广西合浦县人,高级信息系统项目管理师/高级实验师,硕士,研究方向为传感器技术。
参考文献
[1] 卢涛, 王勇, 肖飞云. 基于双姿态传感器的关节运动角度测量方法[j]. 合肥工业大学学报(自然科学版), 2021, 44(6): 738-742.
lu t, wang y, xiao f y. a method for measuring joint motion angle based on dual-attitude sensor[j]. journal of hefei university of technology(natural science), 2021, 44(6): 738-742.
[2] 李志宇, 林嘉睿, 孙岩标, 等. 一种基于线结构光传感器的圆位姿测量方法[j]. 光学学报, 2020, 40(15): 105-114.
li z y, lin j r, sun y b, et al. a method for measuring circular pose based on line structured light sensor[j]. acta optica sinica, 2020, 40(15): 105-114.
[3] 高猛, 徐宇珩, 巨荣博, 等. 冲击力传感器灵敏度系数的三轴同步校准方法研究[j]. 仪器仪表学报, 2021, 41(8): 34-43.
gao m, xu y h, ju r b, et al. research on the triaxial synchronous calibration method of sensitivity for the impact force sensor[j]. chinese journal of scientific instrument, 2021, 41(8): 34-43.
[4] 王东颖, 杜文斌, 雷强, 等. 一种高频响拉杆式位移传感器设计与校准研究[j]. 火炮发射与控制学报, 2020, 41(2): 82-86.
wang d y, du w b, lei q, et al. the design and calibration of a high frequency response rod-type eddy current displacement sensor[j]. journal of gun launch & control, 2020, 41(2): 82-86.
[5] 劳嫦娟, 曹洁, 孙骏栖, 等. 基于激光干涉比长的大范围线位移动态校准系统研究[j]. 中国测试, 2021, 47(s1): 12-18.
lao c j, cao j, sun j x, et al. research on dynamic calibration system of large range linear displacement based on laser interference comparator[j]. china measurement & test, 2021, 47(s1): 12-18.
[6] raspopov v y, alaluev r v, ladonkin a v, et al. tuning and calibration of a coriolis vibratory gyroscope with a metal resonator to operate in angular rate sensor mode[j]. gyroscopy and navigation, 2020, 11(1): 34-40.
[7] varzhitskii l a, chertykovtseva n v, tarasov e m. improvement and possibilities of application of calibration methods for optoelectronic vibration displacement sensor [j]. measurement techniques, 2020, 63(9): 713-721.
[8] liu y x, hu z k, fang j j. two-step calibration method for three-axis magnetic sensor error based on particle swarm optimization[j]. sensor review, 2020, 40(5): 577-583.
[9] 马星河, 孔卫东, 李自强, 等. 一种基于s_vmd与sdr_sampen的局部放电信号去噪方法[j]. 电力系统保护与控制, 2022, 50(18): 29-38.
ma x h, kong w d, li z q, et al. a denoising method for a partial discharge signal based on s_vmd and sdr_sampen[j]. power system protection and control, 2022, 50(18): 29-38.
[10] 张锐, 钱超. 基于rfda小波阈值的心电信号去噪算法[j]. 计算机仿真, 2022, 39(8): 373-376.
zhang r, qian c. ecg signal denoising algorithm based on rfda wavelet threshold[j]. computer simulation, 2022, 39(8): 373-376.
[11] 程龙, 张方华. 用于混合储能系统平抑功率波动的小波变换方法[j]. 电力自动化设备, 2021, 41(3): 100-104.
cheng l, zhang f h. wavelet transform method for hybrid energy storage system smoothing power fluctuation[j]. electric power automation equipment, 2021, 41(3): 100-104.
[12] 朱林, 芦翔, 祁升龙, 等. 基于自适应阈值调整小波去噪法和ht-lmd的电流幅值时滞检测方法[j]. 中国测试, 2022, 48(7): 37-41.
zhu l, lu x, qi s l, et al. current amplitude delay detection method based on adaptive threshold adjusted wavelet denoising method and ht-lmd[j]. china measurement & test, 2022, 48(7): 37-41.
[13] 韩微, 乔玉龙. 基于时间—顶点谱图小波变换的动态纹理分类方法[j]. 信号处理, 2021, 37(6): 1008-1016.
han w, qiao y l. dynamic texture classification method based on spectral time-vertex wavelet transform[j]. journal of signal processing, 2021, 37(6): 1008-1016.
[14] 明勇, 甘晓敏, 杨帆. 基于时空域及高阶矩的红外弱目标检测算法[j]. 国外电子测量技术, 2021, 40(12): 1-6.
ming y, gan x m, yang f. infrared weak target detection algorithm based on space-time domain and high-order moment[j]. foreign electronic measurement technology, 2021, 40(12): 1-6.
[15] 卢中昊, 徐军, 林铭团. 电磁辐射发射现场测试中基于空域对消的背景电磁干扰抑制方法[j]. 系统工程与电子技术, 2020, 42(7): 1433-1438.
lu z h, xu j, lin m t. background electromagnetic interference suppression method based on spatial cancellation for on-site test of electromagnetic radiation emission[j]. systems engineering and electronics, 2020, 42(7): 1433-1438.

网站地图