作者:梅善瑜, 陶为戈, 侯虎
作者单位:江苏理工学院电气信息工程学院,江苏 常州 213001
关键词:永磁同步电机;位置环控制;模糊控制;前馈补偿
摘要:
针对永磁同步电机控制位置跟踪精度低、响应速度慢等问题,提出一种模糊控制和前馈补偿相结合的新型位置环控制方法。在分析永磁同步电机矢量控制原理的基础上,将比例p算法和模糊控制算法相结合,并引入前馈补偿算法用于永磁同步电机位置环控制,在matlab/simulink仿真平台上搭建永磁同步电机仿真模型并进行对比分析。仿真结果表明,使用新型位置环控制器系统相较于常规p算法和模糊p算法控制系统,在电机空载、带负载两种运行状态下,输入阶跃位置信号时,响应速度分别提高25%和10%、24%和9.5%;输入斜坡位置信号时,跟踪误差分别减小26.7%和42.7%、26.9%和44.5%。该方法可有效提高系统的位置跟踪效果与鲁棒性。
research on fuzzy control and feedforward compensation for permanent magnet synchronous motor
mei shanyu, tao weige, hou hu
school of electrical and information engineering, jiangsu university of technology, changzhou 213001, china
abstract: in order to solve the problem of low position tracking accuracy and slow response speed of permanent magnet synchronous motor (pmsm) control, a new position loop control method combining fuzzy control and feedforward compensation is proposed. based on the analysis of the vector control principle of pmsm, the proportional p algorithm and fuzzy control algorithm are combined, and the feedforward compensation algorithm is introduced for the position loop control of pmsm. the simulation model of permanent magnet synchronous motor is built on the matlab/simulink simulation platform and compared. the simulation results show that the response speed of the system using the new position loop controller is improved by 25%, 10%, 24% and 9.5% respectively when the step position signal is input under the motor no-load and loaded operating conditions, compared with the system controlled by the conventional p algorithm and the fuzzy p algorithm. when the slope position signal is input, the tracking error is reduced by 26.7% and 42.7%, 26.9% and 44.5% respectively. this method effectively improves the position tracking effect and robustness of the system.
keywords: permanent magnet synchronous motor;position loop control;fuzzy control;feedforward compensation
2024, 50(8):151-156 收稿日期: 2022-11-06;收到修改稿日期: 2023-02-18
基金项目: 教育部产学合作协同育人项目(202102563009);常州市5g 工业互联网融合应用重点实验室(cm20223015);江苏理工学院研究生实践创新计划(xsjcx21_20)
作者简介: 梅善瑜(1996-),男,江苏徐州市人,硕士研究生,专业方向为机电产品检测与智能控制。
参考文献
[1] 李英春, 侯金明, 王培瑞. 基于改进扩展卡尔曼滤波的pmsm在线参数辨识[j]. 中国测试, 2022, 48(11): 47-53.
li y c, hou j m, wang p r. pmsm online parameter identification method based on improved extended kalman filter[j]. china measurement & test, 2022, 48(11): 47-53.
[2] 熊凯强, 余银犬, 黄鹏程, 等. 永磁同步电机匝间短路不平衡磁力分析[j]. 磁性材料及器件, 2023, 54(6): 43-49.
xiong k q, yu y q, huang p c, et al. analysis of unbalanced magnetic force of permanent magnet synchronous motor with turn-to-turn short circuit[j]. journal of magnetic materials and devices, 2023, 54(6): 43-49.
[3] zhong c q, wang l, xu c f. path tracking of permanent magnet synchronous motor using fractional order fuzzy pid controller[j]. symmetry, 2021, 13(7): 1118-1118.
[4] hyung w l, dae h c, kyo b l. rotor position estimation over entire speed range of interior permanent magnet synchronous motors[j]. journal of power electronics, 2021, 21(4): 693-702.
[5] 闫宏亮, 张嘉楠, 龙虎林. 基于改进滑模趋近律和非线性干扰观测器的pmsm位置跟踪[j]. 电子测量技术, 2022, 45(13): 104-108.
yan h l, zhang j n, long h l. pmsm position tracking based on improved sliding mode reaching law and nonlinear disturbance observer[j]. electronic measurement technology, 2022, 45(13): 104-108.
[6] 戴卫力, 张晓峰. 永磁同步伺服电机的变结构与前馈复合控制[j]. 科学技术与工程, 2019, 19(4): 131-137.
dai w l, zhang x f. compound control of variable structure and feedforward for permanent magnet synchronous servo motor[j]. science technology and engineering, 2019, 19(4): 131-137.
[7] 王嘉, 范蟠果. pmsm伺服系统位置环的pi-模糊混合控制器研究[j]. 微电机, 2020, 53(7): 33-36.
wang j, fan p g. research on pi-fuzzy hybrid controller for position loop of pmsm servo system[j]. micromotors, 2020, 53(7): 33-36.
[8] 唐红雨, 刘贤兴. 基于滑模自抗扰控制器的永磁同步电机位置环控制研究[j]. 微电机, 2015, 48(5): 90-94.
tang h y, liu x x. position loop control study of permanent magnet synchronous motor based on sliding adrc control[j]. micromotors, 2015, 48(5): 90-94.
[9] 尉世超, 杨振强. 基于前馈控制的高精度伺服系统[j]. 组合机床与自动化加工技术, 2022(6): 134-137.
yu s c,yang z q. high precision servo system based on feed-forward control[j]. modular machine tool & automatic manufacturing technique, 2022(6): 134-137.
[10] 周萍, 曹阳, 缪子繁. 模糊pid在永磁同步电机驱动的无阀液压系统中的应用[j]. 机床与液压, 2020, 48(9): 70-74.
zhou p, cao y, miao z f. application of fuzzy pid in valveless hydraulic system driven by pmsm[j]. machine tool & hydraulics, 2020, 48(9): 70-74.
[11] 陈昱昊, 郑宾. 基于模糊pi控制的永磁同步电机矢量控制性能研究[j]. 国外电子测量技术, 2022, 41(7): 75-81.
chen y h, zheng b. research on vector control performance of permanent magnet synchronous motor based on fuzzy pi control[j]. foreign electronic measurement technology, 2022, 41(7): 75-81.
[12] yang y s, ping z w, song y, et al. experimental output regulation of permanent magnet synchronous motor position servo system: an internal model based two step control approach[j]. transactions of the institute of measurement and control, 2022, 44(1): 153-161.
[13] 吴伟, 曾庆军, 王阳, 等. 水下机器人多电机协同模糊滑模控制研究[j]. 中国测试, 2021, 47(11): 101-106.
wu w, zeng q j, wang y, et al. research on fuzzy sliding mode control of multi motor cooperative underwater robot[j]. china measurement & test, 2021, 47(11): 101-106.
[14] 翁红, 王邦继, 杨喆, 等. 适应于微型直流电机的模糊pid控制器fpga实现[j]. 电力电子技术, 2022, 56(9): 50-53.
weng h, wang b j, yang z. implementation of fuzzy pid controller based on fpga for micro dc motor[j]. power electronics, 2022, 56(9): 50-53.
[15] 游奇峰, 唐强, 米良, 等. 基于位置偏差调速的激光跟踪运动控制方法[j]. 中国测试, 2024, 50(2): 155-160.
you q f, tang q, mi l,et al. laser tracking motion control method with speed regulation based on position deviation[j]. china measurement & test, 2024, 50(2): 155-160.

