水泥-凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>水泥-石灰和水泥-稻壳灰稳定土的力学性能和冻融耐久性研究

水泥-石灰和水泥-稻壳灰稳定土的力学性能和冻融耐久性研究

304    2024-08-28

¥0.50

全文售价

作者:雷波1, 黄显彬2

作者单位:1. 广安职业技术学院,四川 广安 638000;
2. 四川农业大学土木工程学院,四川 都江堰 611800


关键词:水泥-石灰稳定土;水泥-稻壳灰稳定土;三轴力学特性;冻融耐久性;质量损失率;超声波速


摘要:

为研究水泥-石灰和水泥-稻壳灰对土体进行加固良的效果及掺量,利用水泥、石灰和稻壳灰分别以水泥∶石灰=1∶1和水泥∶稻壳灰=1∶1制备两种稳定掺料。按照掺入比分别0%、2.5%、5%、7.5%和10%制备稳定土试样,并通过力学试验以及冻融试验对两种稳定土的三轴力学特性以及抗冻融循环的性能进行研究。结果表明:随着围压、稳定掺料和龄期的增加,稳定土的强度逐渐增加;脆性也明显增强;稳定土在3~7 d的强度增长率明显大于7~28 d的强度增长率,且在相同条件下,水泥-石灰稳定土的强度大于水泥-稻壳灰稳定土的强度。冻融循环后质量损失率和超声波变化规律表明土样的冻融耐久性顺序为:水泥-稻壳灰稳定土>水泥-石灰稳定土>纯土。


mechanical properties and freeze-thaw durability of cement-lime and cement-rice husk ash stabilized soil
lei bo1, huang xianbin2
1. guang’an vocational & technical college, guang’an 638000, china;
2. college of civil engineering, sichuan agricultural university, dujiangyan 611800, china
abstract: to study the effect and dosage of cement-lime and cement-rice husk ash on soil reinforcement, cement, lime, and rice husk ash were used to prepare two stabilizing additives by the ratio of cement∶lime = 1∶1 and cement: rice husk ash = 1∶1 respectively. then, stabilized soil samples were prepared by using stabilizing additives in the mixing ratio of 0%, 2.5%, 5%, 7.5%, and 10%, respectively, and the triaxial mechanical properties and freeze-thaw cycle resistance of the two stabilized soils were tested by mechanical test and freeze-thaw test. the results show that with the increasing of confining pressure, stabilized admixture, and age, the strength of stabilized soil increases gradually. the brittleness also increases significantly. the strength growth rate of stabilized soil from 3 d to 7 d is significantly greater than that of 7 d to 28 d, and under the same conditions, the strength of cement-lime stabilized soil is greater than that of cement-rice husk ash stabilized soil. the change law of mass loss rate and ultrasonic wave after freeze-thaw cycles showed that the order of freeze-thaw durability of soil samples was: cement-rice husk ash stabilized soil>cement-lime stabilized soil>pure soil.
keywords: cement-lime stabilized soil;cement-rice husk ash stabilized soil;triaxial mechanical properties;freeze-thaw durability;mass loss rate;ultrasonic velocity
2024, 50(8):130-136  收稿日期: 2021-09-24;收到修改稿日期: 2021-11-18
基金项目: 广安市2023年“揭榜挂帅制”科技项目(2023jbgs01)
作者简介: 雷波(1986-),男 ,副教授, 硕士,研究方向为建筑材料、 钢结构、建筑施工、结构设计。
参考文献
[1] 彭波, 尚文勇, 赵宏伟, 等. 磷石膏综合稳定土力学性能及合理掺量研究[j]. 新型建筑材料, 2020, 47(8): 86-90
peng b, shang w y, zhao h w, et al. study on mechanical properties and rational addition of phosphogypsum comprehensive stabilized soil[j]. new building materials, 2020, 47(8): 86-90
[2] 彭波, 张晶, 杨征文, 等. 基于lca的磷石膏石灰稳定土环境影响评价[j]. 重庆交通大学学报(自然科学版), 2022, 41(1): 111-115 132
peng b, zhang j, yang z w, et al. environmental impact assessment of phosphogypsum lime stabilized soil based on lca[j]. journal of chongqing jiaotong university(natural science), 2022, 41(1): 111-115 132
[3] 薛艳华, 高明星, 袁飞龙, 等. 聚丙烯酰胺对石灰稳定土早期强度和破坏形式的影响[j]. 复合材料学报, 2021, 38(4): 1283-1291
xue y h, gao m x, yuan f l, et al. effect of polyacrylamide on early strength and failure form of lime stabilized soil[j]. acta materiae compositae sinica, 2021, 38(4): 1283-1291
[4] 方中明, 张瑞坤, 石名磊. 石灰铁尾矿砂稳定土工程特性研究[j]. 公路工程, 2021, 46(3): 142-148
fang z m, zhang r k, shi m l. study on engineering properties of lime and iron tailings stabilized soil[j]. highway engineering, 2021, 46(3): 142-148
[5] 刘宏伟. sh及石灰固化土吸水和失水性能研究[d]. 兰州: 兰州大学, 2019.
liu h w. study on water absorption and water loss performance of sh and lime solidified soil[d]. lanzhou: lanzhou university, 2019.
[6] eswaramoorthi p, kumar v s, prabhu p s, et al. influence of nanosized silica and lime particles on the behaviour of soil[j]. international journal of civil engineering and technology, 2017, 8(9): 353-360
[7] 栗培龙, 朱德健, 裴仪, 等. 电石渣稳定土强度特性影响因素分析[j]. 科学技术与工程, 2022, 22(6): 2485-2490
li p l, zhu d j, pei y, et al. analysis of influencing factors on strength characteristics of calcium carbide slag stabilized soil[j]. science technology and engineering, 2022, 22(6): 2485-2490
[8] 徐晓云. 钢渣稳定土的干缩性能研究[j]. 中外公路, 2018, 38(4): 319-322
xu x y. research on dry shrinkage property of steel slag stabilized soil[j]. journal of china & foreign highway, 2018, 38(4): 319-322
[9] 尤忆, 向杰. 水泥稳定土强度和微观结构的冻融损伤规律[j]. 硅酸盐通报, 2020, 39(2): 453-458
you y, xiang j. freeze-thaw damage laws of strength and microstructure of cement stabilized soils[j]. bulletin of the chinese ceramic society, 2020, 39(2): 453-458
[10] 何国平, 蔡天德, 陈双, 等. 土质固化剂对水泥土力学特性的影响及机理研究[j]. 中国测试, 2021, 275(6): 63-67
he g p, cai t d, chen s, et al. research on the effect and mechanism of soil curing agent on mechanical properties of cement soil[j]. china measurement & test, 2021, 275(6): 63-67
[11] 栗培龙, 柳玉, 高朋, 等. 聚丙烯纤维增强的电石渣稳定土试验研究[j]. 公路, 2021, 66(3): 258-263
li p l, liu y, gao p, et al. research on polypropylene fiber reinforced carbide slag stabilized soil[j]. highway, 2021, 66(3): 258-263
[12] aryal s, kolay p k. long-term durability of ordinary portland cement and polypropylene fibre stabilized kaolin soil using wetting–drying and freezing–thawing test[j]. international journal of geosynthetics and ground engineering, 2020, 6(1): 811-816
[13] tiwari n, satyam n, singh k. effect of curing on micro-physical performance of polypropylene fiber reinforced and silica fume stabilized expansive soil under freezing thawing cycles[j]. scientific reports, 2020, 10(1): 7624
[14] benhaoua w, grine k, kenai s. performance of stabilized earth with wheat straw and slag[j]. mrs advances, 5(25): 1285-1294.

网站地图