硐室岩壁过渡型破坏模式及最大线应变理论分析研究中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>硐室岩壁过渡型破坏模式及最大线应变理论分析研究

硐室岩壁过渡型破坏模式及最大线应变理论分析研究

300    2024-08-28

¥0.50

全文售价

作者:李晓光1,2, 张普锦3, 周春雷4, 赵亮1,2, 李远1,2

作者单位:1. 北京科技大学土木与资源工程学院,北京 100083;
2. 北京科技大学顺德创新学院,广东 佛山 528399;
3. 中国铁建房地产集团有限公司,北京 100043;
4. 中央军委机关事务管理总局工程代建管理办公室,北京 100082


关键词:脆剪过渡式破坏;表面不稳定性;最大线应变理论;岩石力学试验


摘要:

地下硐室所在的岩体应力条件复杂,破坏模式随着与开挖面距离的不同发生转变,开挖所引起的原位脆性岩体应力集中会导致平行于自由面的局部损伤演化,称为表面不稳定性。而在深层条件下,低强度硐室岩壁的表面不稳定性及过渡型破坏模式很常见。针对目前实验室中圆柱形试样在单轴压缩试验中试样受力不符合岩壁单元实际应力状态的局限性,研发一款可模拟硐室岩壁过渡式破坏的试验测试仪。对长方体砂岩、花岗岩试样进行单临空面双向应力加载试验,分析岩石试样的裂纹发展、应力应变规律和破坏模式过渡转化。基于最大线应变理论及胡克定律提出最大线应变强度分析公式,建立基于最大线应变理论的岩壁表面不稳定性破坏的试验测试和分析方法,并且同mohr-coulomb准则及hoek-brown强度理论进行比较,通过试验数据验证最大线应变理论解释硐室岩壁过渡型破坏模式的适用性。


theoretical analysis and research on transitional failure mode and maximum linear strain of cave wall
li xiaoguang1,2, zhang pujin3, zhou chunlei4, zhao liang1,2, li yuan1,2
1. school of civil and resource engineering, university of science and technology beijing, beijing 100083, china;
2. shunde innovation school, university of science and technology beijing, foshan 528399, china;
3. china railway construction real estate group co., ltd., beijing 100043, china;
4. engineering construction management,general administration of central military commission organs affairs management office, beijing 100082, china
abstract: the stress conditions of the rock mass where the underground chamber is located are complex, and the failure mode changes with the distance from the excavation surface. the stress concentration of in situ brittle rock mass caused by excavation results in localized damage evolution parallel to the free face, which is called surface instability. under deep conditions, surface instability and transitional failure modes of low strength chamber rock walls are common. in response to the limitations of cylindrical specimens in uniaxial compression tests in the laboratory, which do not conform to the actual stress state of rock wall units, a testing instrument has been developed that can simulate the transitional failure of rock walls in chambers. a single free face bidirectional stress loading test was conducted on rectangular sandstone and granite samples to analyze the crack development, stress-strain laws, and transition transformation of failure modes of rock samples. based on the maximum linear strain theory and hooke's law, the maximum linear strain strength analysis formula is proposed, the test and analysis method for surface instability failure of rock wall based on maximum linear strain theory is established, compared with mohr coulomb criterion and hoek brown strength theory, the applicability of the maximum linear strain theory to explain the transitional failure mode of chamber rock wall is verified through the test data.
keywords: brittle shear transition failure;surface instability;maximum linear strain theory;rock mechanics test
2024, 50(8):109-117  收稿日期: 2022-10-19;收到修改稿日期: 2023-04-19
基金项目: 国家重点研发计划(2022yfc2904100);佛山市人民政府科技创新专项资金项目(bk21be014)
作者简介: 李晓光(1982-),男,吉林公主岭市人,博士研究生,主要从事岩土工程方面的研究工作。
参考文献
[1] 王晓蕾. 工作面覆岩裂隙演化测试技术发展趋势[j]. 中国测试, 2022, 48(5): 22-30.
wang x l. development trend of test technology for overburden fracture evolution in working face[j]. china measurement & test, 2022, 48(5): 22-30.
[2] brace w f, bombolakis e g. a note on brittle crack growth in compression[j]. journal of geophysical research, 1963, 68(12): 3709-3713.
[3] hoek e,martin c d.  fracture initiation and propagation in intact rock – a review[j]. journal of rock mechanics and geotechnical engineering: english edition, 2014, 6(4): 14.
[4] paterson m s. experimental deformation and faulting in wombeyan marble[j]. geological society of america bulletin, 1958, 69(4): 465-467.
[5] 米红林, 纳曼·麦麦提, 色麦尔江·麦麦提玉苏普, 等. 基于现代测试技术的危岩力学性能实验研究[j]. 中国测试, 2021, 47(6): 38-44.
mi h l, naman m, semerjan m, et al. experimental study on mechanical properties of dangerous rock based on modern testing technology[j]. china measurement & test, 2021, 47(6): 38-44.
[6] tarasov b g, randolph m f. frictionless shear at great depth and other paradoxes of hard rocks[j]. international journal of rock mechanics and mining sciences, 2008, 45: 316-328.
[7] makarov v v, guzev m a, odintsev v n, et al. periodical zonal character of damage near the openings in highly-stressed rock mass conditions[j]. journal of rock mechanics and geotechnical engineering, 2016, 8(2): 164-169.
[8] stacey t r. a simple extension strain criterion for fracture of brittle rock[j]. international journal of rock mechanics & mining sciences & geomechanics abstracts, 1981, 18(6): 469-474.
[9] barton n, shen b t. risk of shear failure and extensional failure around over-stressed excavations in brittle rock[j]. journal of rock mechanics and geotechnical engineering, 2017, 9(2): 210-225.
[10] panthi k k. methods applied in the prediction of brittle failure in tunnels and underground caverns[j]. hydro nepal journal of water energy & environment, 2018, 22: 5.
[11] kao c s. surface instability as damage evolution in rock[j]. dissertations & theses-gradworks, 2011:162.
[12] 张普锦, 李远, 乔兰, 等. 硐室岩壁脆剪过渡式破坏模拟仪[p]. 北京: cn107907402b, 2020-08-11.
zhang p j, li y, qiao l, et al. a brittle shear transition failure simulator for cave walls [p]. beijing: cn107907402b, 2020-08-11.
[13] 马春庭, 谭业双, 李江波, 等. 基于lvdt传感器的测径仪研究[j]. 国外电子测量技术, 2014, 33(10): 72-75.
ma c t, tan y s, li j b, et al. research on diameter measuring instrument based on lvdt sensor[j]. foreign electronic measurement technology, 2014, 33(10): 72-75.
[14] jiang q, yang b, yan f, et al. new method for characterizing the shear damage of natural rock joint based on 3d engraving and 3d scanning[j]. international journal of geomechanics, 2020, 20(2): 1-15.
[15] gramberg j. the axial cleavage fracture 1 axial cleavage fracturing, a significant process in mining and geology[j]. engineering geology, 1965, 1(1): 31-72.
[16] 李远, 乔兰, 隋智力, 等. 岩石材料脆性剪切破坏模式下的强度分析[j]. 北京科技大学学报, 2012, 34(12): 1364-1370.
li y, qiao l, sui z z, et al. strength analysis of rock materials under brittle shear failure mode[j]. journal of beijing university of science and technology, 2012, 34(12): 1364-1370.

网站地图