作者:王磊, 田雨
作者单位:国家海洋技术中心,天津 300112
关键词:温盐跃层;双扩散原理;温度;电导率;动态特性;时间常数
摘要:
在海洋剖面观测和基于移动平台的观测中,海洋温盐传感器的动态性能直接影响其数据质量。目前,国内已开展了海洋温盐传感器动态特性测试平台研制,并开展相关海洋温度和电导率传感器的动态特性测试。该文详细阐述基于双扩散原理的海洋温盐跃层模拟装置的设计和实现过程,该装置高5 m,有效模拟自然界真实存在的垂直跃层现象,是对自然界真实跃层的最佳模拟,实现温度跃层温度差10℃,盐度跃层差10 ms/cm,运动控制子系统可模拟0.1~3.0 m/s传感器运动状态。通过sbe3温度传感器、sbe4电导率传感器和mscti 125快速温盐测量仪的测试,试验表明:该平台复现的垂直分层的温盐跃层能有效测试温度传感器和电导率传感器的动态特性,时间常数算法结果与传感器标称值基本一致。从试验结果分析出,该平台更适合于点状感应元件的测试,同时感应元件的封装结构对于动态响应有着不可忽略的影响。该平台的研制成果为后续开展海洋温盐动态特性研究提供新的测试平台和方法。
design and application of dynamic characteristics testing platform for ocean temperature and salinity sensors
wang lei, tian yu
national ocean technology center, tianjin 300112, china
abstract: in ocean profile observations and mobile platform-based observations, the dynamic performance of ocean temperature and salinity sensors directly affects the quality of their data. currently, a platform for testing the dynamic characteristics of ocean temperature and conductivity sensors has been developed domestically. this paper elaborates on the design and implementation process of an ocean thermohaline interface simulation device based on double diffusion principles. the device, towering 5 m high, effectively simulates the vertical stratification phenomena found in nature, providing the best simulation of natural stratification. it achieves temperature differences of 10℃ and salinity differences of 10 ms/cm at thermohaline interfaces, with a motion control subsystem capable of simulating sensor movement states from 0.1 to 3.0 m/s. tests using sbe3 temperature sensors, sbe4 conductivity sensors, and the mscti 125 fast thermosalinometer show that the platform effectively replicates vertical stratification thermohaline layers, enabling dynamic testing of temperature and conductivity sensors. algorithm results for time constants closely match sensor nominal values. analysis of test results indicates that the platform is more suitable for testing point-like sensing elements, with the packaging structure of sensing elements having a significant impact on dynamic response. the development of this platform provides a new testing platform and method for subsequent studies on the dynamic characteristics of ocean temperature and salinity, facilitating further research in this field.
keywords: thermohalocline;double diffusion principle;temperature;conductivity;dynamic characteristics;time constant
2024, 50(8):61-71 收稿日期: 2024-05-23;收到修改稿日期: 2024-06-19
基金项目: 自然资源部海洋计量检测技术创新中心创新基金资助(2024mmit07)
作者简介: 王磊(1980-),男,河北大名县人,工程师,硕士,研究方向为海洋仪器测试技术。
参考文献
[1] gregg m c, hess w c. dynamic response calibration of sea-bird temperature and conductivity probes[j]. journal of atmospheric and oceanic technology, 1985, 2(3): 304-313.
[2] fozdar f m, parkar g j, imberger j. matching temperature and conductivity sensor response characteristics[j]. journal of physical oceanography, 1985, 15(11): 1557-1569.
[3] schmitt r w, millard r c, toole j m, et al. a double-diffusive interface tank for dynamic-response studies[j]. journal of marine research, 2005, 63(1): 263-289.
[4] 肖波, 温明明, 郭斌斌. 温盐深测量系统误差源分析及处理[j]. 海洋信息, 2014(3): 7-9. doi:10.3969/j.issn.1005-1724.2014. 03. 002.
xiao b, wen m m, guo b b. error source analysis and treatment of temperature and salt depth measurement system[j]. marine information, 2014(3): 7-9.
[5] 廖和琴, 田雨, 高坤. sbe3温度传感器时间常数测量和测试方法的研究[j]. 海洋技术学报, 2017, 36(6): 5.
liao h q, tian y, gao k. research on measuring and testing method of sbe3 temperature sensor time constant[j]. journal of ocean technology, 2017, 36(6): 5.
[6] 王朋朋, 杨健, 赵士伟, 等. 海洋电导率传感器动态标定方法研究[j]. 传感技术学报, 2023, 36(5): 751-756.
wang p p, yang j, zhao s w, et al. research on dynamic calibration method of ocean conductivity sensor[j]. chinese journal of sensors and actuators, 2023, 36(5): 751-756.
[7] yang y t. double diffusive convection in the finger regime for different prandtl and schmidt numbers[j]. acta mechanica sinica(english series), 2020, 6(4): 8.
[8] yang y t, roberto v, detlef l. vertically bounded double diffusive convection in the finger regime: comparing no-slip versus free-slip boundary conditions[j]. physical review letters, 2016, 117(18): 184501-184501.
[9] 甄立明. 1978年实用盐标[j]. 海洋技术学报, 1980(1): 83-86.
zhen l m. practical salinity scale of 1978[j]. journal of ocean technology, 1980(1): 83-86.
[10] 王鲍, 张雄杰, 胡斌, 等. 高精度ad采集卡性能测试及评价方法研究[j]. 中国测试, 2022, 48(2): 135-140.
wang b, zhang x j, hu b, et al. study on method for test and evaluation of high precision ad acquisition card[j]. china measurement & test, 2022, 48(2): 135-140.
[11] 魏明, 袁东阁, 张军, 等. 高精度快速升降温恒温槽的设计与试验[j]. 中国测试, 2023, 49(8): 128-133.
wei m, yuan d g, zhang j, et al. design and experiment of high-precision rapid heating and cooling thermostatic bath[j]. china measurement & test, 2023, 49(8): 128-133.
[12] nash j d, moum j n. estimating salinity variance dissipation rate from microstructure conductivity measurements[j]. journal of atmospheric & oceanic technology, 1999, 16: 263-274.
[13] 康雄兵, 水春生, 邱宝军. 数字温度传感器自动测试及校准技术研究[j]. 中国测试, 2022, 48(s2): 119-123.
kang x b, shui c s, qiu b j. study of automatic testing and callibrating for digital temperature sensor[j]. china measurement & test, 2022, 48(s2): 119-123.

