极端海况下新型浮式海上平台生存性试验方法研究中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>极端海况下新型浮式海上平台生存性试验方法研究

极端海况下新型浮式海上平台生存性试验方法研究

390    2024-08-28

¥0.50

全文售价

作者:李士花1, 路宽1,2, 王花梅1,2, 郑慧源1

作者单位:1. 国家海洋技术中心,天津 300112;
2. 自然资源部海洋观测技术重点实验室,天津 300112


关键词:新型浮式平台;极端海况;生存性;试验方法


摘要:

海上平台的安全性越来越受到重视,其安全性在一定程度上取决于安全设计标准和规范。目前针对极端海况下新型浮式海上平台生存性试验方法的有关标准较少。参考国际电工委员技术委员会颁布的iec ts 62600-103中针对波浪能转换装置在极端海况下的生存性试验标准,在其可操作性和环境条件选取等方面做改进,提出针对新型浮式海上平台的生存性试验方法:选取100年一遇的波浪条件作为基准条件,并以基准波浪条件为中心值,分别选取两组波浪朝向不同、谱形不同、能量不同的对照海况条件,最终形成9组独立的环境条件,用于测试平台针对某一确定波浪海况下的最大响应;确定该波浪条件后,选取100年一遇的风、流条件,进行3组补充测试,分别为风、海流与波浪共向;风与波浪共向且与海流不共向;风、海流、波浪均不共向。并以布放于国家海洋综合试验场威海场区的“国海试ⅰ”海上试验平台为例,采用数值模拟的方法,研究其在极端海况下的生存性。研究过程验证该生存性试验方法的可行性,提出的试验方法也可为将来相关标准的制定提供参考。


research on survivability test method for new types of floating offshore platforms under extreme sea conditions
li shihua1, lu kuan1,2, wang huamei1,2, zheng huiyuan1
1. national ocean technology center, tianjin 300112, china;
2. key laboratory of ocean observation technology mnr, tianjin 300112, china
abstract: the safety of offshore platforms is receiving increasing attention, and their safety relies to a great extent on safety design standards and regulations. currently, there are limited standards available specifically for survivability testing methods of new types of floating offshore platforms under extreme sea conditions. referring to the iec ts 62600-103 issued by the international electrotechnical commission (iec) for survivability testing of wave energy converters under extreme sea conditions, improvements have been made in terms of operability and selection of environmental conditions. a survivability testing method for new types of floating offshore platforms is proposed: selecting the 100-year return wave conditions as the reference condition and determining two sets of contrasting sea conditions with different wave directions, spectra, and energy levels, centered around the reference wave condition. this results in a total of nine independent environmental conditions used to test the platform's maximum response under a specific wave condition. after determining the wave condition, three additional tests are conducted with 100-year return wind and current conditions: wind and waves co-directional but not concurrent with the current; wind and waves co-directional and concurrent with the current; wind, waves, and current all non-co-directional. taking the "national sea trial i" offshore test platform deployed at the weihai site of the national marine comprehensive test site as an example, numerical simulation methods are used to study its survivability under extreme sea conditions. the feasibility of the proposed survivability testing method is verified through the research process, and the suggested testing method can serve as a reference for future standard development.
keywords: new types of offshore platforms;extreme sea conditions;survivability;test method
2024, 50(8):51-60  收稿日期: 2024-04-28;收到修改稿日期: 2024-05-27
基金项目: 国家重点研发计划项目(2023yfc3107505)
作者简介: 李士花(2000-),女,山东济南市人,硕士研究生,专业方向为海洋仪器设备试验与测试技术。
参考文献
[1] 马勇, 解光慈, 徐稼航, 等. 漂浮式海洋牧场装置频域水动力性能分析[j]. 船舶工程, 2021, 43(4): 1-5.
ma y, xie g c, xu j h, et al. hydrodynamic performance analysis of floating marine ranching equipment in frequency domain[j]. ship engineering, 2021, 43(4): 1-5.
[2] 刘飞虹, 吴迪, 苗得胜, 等. 海上风电场激光雷达尾流测试分析 [j]. 中国测试, 2023, 49(4): 33-39.
liu f h, wu d, miao d s, et al. wake measurement and analysis of offshore wind farm based on scanning lidar[j]. china measurement & test, 2023, 49(4): 33-39.
[3] 任年鑫, 朱莹, 马哲, 等. 新型浮式风能-波浪能集成结构系统耦合动力分析[j]. 太阳能学报, 2020, 41(5): 159-165.
ren n x, zhu y, ma z, et al. coupled dynamic analysis of a novel floating wind energy and wave energy combination system[j]. acta energiae solaris sinica, 2020, 41(5): 159-165.
[4] 徐普, 黎思亮, 宋启明, 等. 深水漂浮式光伏平台系泊结构动力响应分析[j]. 太阳能学报, 2023, 44(10): 156-164.
xu p, li s l, song q m, et al. dynamic response analysis of mooring structure for deep-water floating photovoltaic platform[j]. acta energiae solaris sinica, 2023, 44(10): 156-164.
[5] 赵麟, 李盛善, 朱斌, 等. 漂浮式风电机组的载荷优化控制及其先进监测技术研究[j]. 中国测试, 2014, 40(6): 108-112.
zhao l, li s s, zhu b, et al. study of floating wind turbine load optimization control and advanced monitoring[j]. china measurement & test, 2014, 40(6): 108-112.
[6] 夏岚, 王鑫, 石建军, 等. 基于锚泊式试验平台的海上仪器装备试验方法研究[j]. 海洋技术学报, 2021, 40(5): 38-44.
xia l, wang x, shi j j, et al. research on test methods of offshore instruments and equipments based on anchored testing platform[j]. journal of ocean technology, 2021, 40(5): 38-44.
[7] 黄硕, 梁诗琪, 盛松伟, 等. 半潜式波浪能养殖平台与系泊系统的耦合动力分析[j]. 太阳能学报, 2022, 43(8): 463-471.
huang s, liang s q, sheng s w, et al. dynamic analysis of coupled semi-submersible wave energy aquaculture platform and mooring system[j]. acta energiae solaris sinica, 2022, 43(8): 463-471.
[8] 杨建民, 肖龙飞, 盛振邦. 海洋工程水动力学试验研究 [m]. 上海:上海交通大学出版社, 2008: 63-64.
yang j m, xiao l f, sheng z b. experimental study on hydrodynamics of marine engineering [m]. shanghai:shanghai jiaotong university press, 2008: 63-64.
[9] 范亚丽, 匡晓峰, 方田, 等. 半潜式支持平台恶劣海况下的运动性能试验研究[j]. 船舶工程, 2021, 43(2): 134-140.
fan y l, kuang x f, fang t, et al. motion performance experiment study of a semi-submersible support platform under severe sea condition[j]. ship engineering, 2021, 43(2): 134-140.
[10] 李蜀军, 刘青松, 李春, 等. 极端海况下附配重系泊漂浮式风力机响应分析[j]. 太阳能学报, 2022, 43(12): 415-422.
li s j, liu q s, li c, et al. response analysis of floating wind turbine with counterweight mooring under extreme sea conditions[j]. acta energiae solaris sinica, 2022, 43(12): 415-422.
[11] 闫渤文, 朱恒立, 黄叙, 等. 台风非平稳性对钢格构浮式基础海上风机动力响应影响研究[j]. 工程力学, 2022, 39(7): 237-246.
yan b w, zhu h l, huang x, et al. study on influences of typhoon non-stationarity on dynamic response of offshore wind turbine with steel lattice floating foundation[j]. engineering mechanics, 2022, 39(7): 237-246.
[12] rueda bayona j g, guzmán a, eras j j c. vortex-induced vibration effect of extreme sea states over the structural dynamics of a scaled monopile offshore wind turbine[j]. journal of ocean engineering and marine energy, 2023, 9(2): 359-376.
[13] international electrotechnical commission. marine energy-wave, tidal and other water current converters - part 103: guidelines for the early stage develop-ment of wave energy converters - best practices and recommended procedures for the testing of pre-prototype devices [s]. london: international electrotechnical commission, 2018:.
[14] international electrotechnical commission. marine energy - wave, tidal and other water current converters - part 2: marine energy systems - design requirements: [s]. london: international electrotechnical commission, 2019.
[15] det. norske veritas as. design of offshore steel structures general (lrfd method) dnv-os-c101 [m]. july 2014.
[16] ghafari h, dardel m. parametric study of catenary mooring system on the dynamic response of the semi-submersible platform[j]. ocean engineering, 2018, 153: 319-332.
[17] rinaldi g, gordelier t, sansom m, et al. development of a modular mooring system with clump weights for commercial harbours [j]. journal of marine science and technology (japan), 2020.
[18] 付冲, 赵刘群, 孙雷. 采用弦式系泊系统的海洋平台水动力性能数值模拟分析[j]. 中国舰船研究, 2022, 17(6): 193-208.
fu c, zhao l q, sun l. numerical simulation analysis on hydrodynamic performance of platform with string-type mooring system[j]. chinese journal of ship research,[j]. chinese journal of ship research, 2022, 17(6): 193-208.
[19] 余骁, 雷慧, 王允. 浅水浮式平台多点系泊系统适用性研究[j]. 舰船科学技术, 2020, 42(1): 105-110.
yu x, lei h, wang y. research on the applicability of multi-points mooring system for floating platform in shallow waters[j]. ship science and technology, 2020, 42(1): 105-110.
[20] shen z x, yuan z j, li h b, et al. study on the characteristics of a new hybrid mooring system for dual-platform joint operations[j]. china ocean engineering, 2023, 37(3): 506-518.
[21] 王涌, 韩东, 苑志江, 等. 锚泊安全视域下的锚链振动特征检测实验研究[j]. 中国测试, 2019, 45(10): 159-163.
wang y, han d, yuan z j, et al. experiment study on vibration characteristics of anchor chain from the perspective of anchorage safety[j]. china measurement & test, 2019, 45(10): 159-163.

网站地图