动态缆上弯段曲率分布特征研究中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>动态缆上弯段曲率分布特征研究

动态缆上弯段曲率分布特征研究

399    2024-08-28

¥0.50

全文售价

作者:吴伟宁1, 李春梅2, 韦莹莹2, 孙亚峰2, 卢青针1, 岳前进1, 尹原超1

作者单位:1. 大连理工大学化工海洋与生命学院,辽宁 盘锦 124221;
2. 江苏亨通高压海缆有限公司,江苏 苏州 215537


关键词:动态缆;防弯器;疲劳热点;曲率分布;分布式光纤


摘要:

动态缆的疲劳寿命设计与分析过程中需要获得疲劳热点位置的准确响应,而动态缆曲率的理论预测模型与数值模型基于大量假设且结果缺乏验证,因此需要对动态缆上弯段曲率分布情况开展实验研究。该文提出基于分布式光纤测量技术的曲率测量方法,建立含空隙的动态缆-防弯器系统在疲劳荷载作用下的有限元模型,并设计动态缆-防弯器系统原型拉弯试验,采用所提出的测量方法进行动态缆曲率分布测量。结果表明动态缆缆体处最大曲率较防弯器处最大曲率偏大9.9%,且增大拉力值与摆动角度将增大动态缆最大曲率并使最大曲率发生位置前移。该文提出的基于分布式光纤测量技术的动态缆曲率测量方法可为动态缆的原型试验和疲劳设计提供数据支持。


study on the curvature distribution characteristics of bend sections on dynamic cables
wu weining1, li chunmei2, wei yingying2, sun yafeng2, lu qingzhen1, yue qianjin1, yin yuanchao1
1. school of chemical engineering, ocean and life sciences, dalian university of technology, panjin 124221, china;
2. hengtong submarine power cable co., ltd., suzhou 215537, china
abstract: in the process of fatigue life design and analysis of dynamic cables, it is necessary to obtain accurate responses to the location of fatigue hot spots, but the theoretical prediction model and numerical model of dynamic cable curvature are based on a few assumptions. at the same time, the results are not verified. so it is necessary to carry out experimental research on the curvature distribution of the curved section on the dynamic cable. in this paper, a curvature measurement method based on distributed optical fiber measurement technology is proposed, and a finite element model of a dynamic cable-bending system with voids under fatigue load is established. a prototype tensile bending test of a dynamic cable-bending device system was designed, and the dynamic cable curvature distribution was measured by the proposed measurement method. the results show that the maximum curvature at the dynamic cable body is 9.9% larger than that at the bend stiffener, and increasing the tensile value and swing angle will increase the maximum curvature of the dynamic cable and move the maximum curvature forward. the dynamic cable curvature measurement method based on distributed optical fiber measurement technology proposed in this paper provides data support for the prototype test and fatigue design of dynamic cables.
keywords: dynamic cable;bend stiffener;fatigue hot spot;curvature distribution;distributed fiber
2024, 50(8):34-40  收稿日期: 2024-05-27;收到修改稿日期: 2024-07-13
基金项目: 国家重点研发计划项目(2022yfb4201301);辽宁省自然科学基金联合基金(2023-bsba-040)
作者简介: 吴伟宁(2000-),男,河北邯郸市人,硕士研究生,专业方向为结构失效分析与试验技术研发。
参考文献
"[1] 蒲定, 杨婉秋, 丰如男, 等. 浅水浮式风机动态电缆线型设计[j]. 海洋工程装备与技术, 2020, 7(6): 412-418.
pu d, yang w q, feng r n, et al. configuration design of a dynamic cable in floating wind turbine[j]. ocean engineering equipment and technology, 2020, 7(6): 412-418.
[2] 阎军, 胡海涛, 苏琦, 等. 海洋电缆中关键力学问题的研究进展与展望[j]. 力学学报, 2022, 54(4): 846-861.
yan j, hu h t, su q, et al. prospect and progression of key mechanical problems in marine cables[j]. chinese journal of theoretical and applied mechanics, 2022, 54(4): 846-861.
[3] kim j d, jang b s, yun r h. application of analytical model in the prediction of dynamic responses and fatigue damage of flexible risers: part i - improvement of analytical model considering shear deformation and varying tension effects[j]. marine structures, 2021, 79: 103044.
[4] hoffman j, dupont w, reynolds b. a fatigue-life prediction model for metallic tube umbilicals[c]//all days. otc, 2001.

https://doi.org/10.4043/13203-ms

.
[5] jose j, choi s j, gudmestad o t. sensitivity study on a 3d numerical model for estimating breaking wave forces on a jacket structure[c]//the 27th international ocean and polar engineering conference. onepetro, 2017.
[6] 庞国良. 海洋非粘结柔性管截面力学特性及典型失效分析研究[d]. 广州: 华南理工大学, 2020.
pang g l. research on cross sectional mechanical characteristics and typical failures analyses of marine unbonded flexible pipe[d]. guangzhou: south china university of technology, 2020.
[7] 刘军鹏, 齐华林, 罗晓兰, 等. 基于有限元方法的柔性立管防弯器疲劳寿命分析[j]. 海洋工程, 2021, 39(3): 141-147.
liu j p, qi h l, luo x l, et al. fatigue life of flexible riser bend stiffener based on finite element method[j]. the ocean engineering, 2021, 39(3): 141-147.
[8] caire m , vaz m a . theeffect of flexible pipe non-linear bending stiffness behavior on bend stiffener analysis[c]// asme international conference on offshore mechanics & arctic engineering, 2007.
[9] demanze f, hanonge d, chalumeau a, et al. fatigue life analysis of polyurethane bending stiffeners[c]//proceedings of the 24th international conference on offshore mechanics and arctic engineering. asme, 2005: 261-267.
[10] dos santos l v, gon alves e. proposed new failure criterion for bending stiffeners[c]// proceedings of the twenty-fifth international ocean and polar engineering conference. international society of offshore and polar engineers, 2015: 328-335. https://kns.cnki.net/kcms/detail/detail.aspx?filename=hygc202103015&dbname=cjfd&dbcode=cjfq.
[11] 宋磊建, 付世晓, 陈希恰, 等. 深海脐带缆总体响应特性比较研究[j]. 振动与冲击, 2014, 33(1): 119-124.
song l j, fu s x, chen x q, et al. comparative study on deepwater umbilical overall response characteristics[j]. journal of vibration and shock, 2014, 33(1): 119-124.
[12] 许金锦. 水下生产系统动态脐带缆抗疲劳优化设计及疲劳可靠性分析[d]. 大连: 大连理工大学, 2020.
xu j j. the fatigue optimization design and reliability analysis of umbilical in subsea production system[d]. dalian: dalian university of technology, 2020.
[13] connaire a, doynov k, nestor r, et al. validated methodology for calculating fatigue capacity of deepwater umbilicals[c]//international conference on offshore mechanics and arctic engineering. madrid, spain. 2018, 51241.
[14] dobson a, fogg d. fatigue testing and analysis of a deep water steel tube umbilical[c]//international conference on offshore mechanics and arctic engineering. estoril, portugal. 2008, 48203: 133-140.
[15] doynov k, belson e, yuan h, et al. root cause analysis of bend stiffener failure during umbilical full-scale fatigue testing[c]//international conference on offshore mechanics and arctic engineering. busan, south korea. 2016, 49965.
[16] saevik s. comparison between theoretical and experimental flexible pipe bending stresses[c]//international conference on offshore mechanics and arctic engineering. shanghai, 2010, 49132: 395-402.
[17] saevik s, berge s. fatigue testing and theoretical studies of two 4 in flexible pipes[j]. engineering structures, 1995, 17(4): 276-292.
[18] tanaka r l, gonalves r t, ferreira t b, et al. minimum bending radius (mbr) tests of flexible pipes: an experimental approach via optical motion capture and image processing[c]//offshore technology conference brazil. rio de janeiro, brazil, 2011.
[19] andersen m, berg a, saevik s. development of an optical monitoring system for flexible risers[c]//offshore technology conference, houston, texas, 2001 otc13201-ms.
[20] weppenaar n, kristiansen m. present and future possibilities in optical condition monitoring of flexible pipes[c]//offshore technology conference, houston, texas, 2008 otc-19427-ms.
[21] morikawa s r k, camerini c s, braga a m, et al. real time continuous structural integrity monitoring of flexible risers with optical fiber sensors[c]//offshore technology conference, houston, texas, 2010 otc-20863-ms.
[22] gasparetto v. method of evaluating the fatigue life of flexible risers by monitoring the tensile armor wires strain[d]. rio de janeiro: federal university of rio de janeiro,2017.

网站地图