胸尾鳍协同推进的仿生机器鱼设计中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>胸尾鳍协同推进的仿生机器鱼设计

胸尾鳍协同推进的仿生机器鱼设计

424    2024-08-28

¥0.50

全文售价

作者:刘葳兴1,2, 杜运男1, 段昌朋2, 胡婉婷2, 张之阳1,2, 孙成娇3

作者单位:1. 江苏海洋大学海洋工程学院,江苏 连云港 222005;
2. 江苏海洋大学马卡洛夫海洋工程学院,江苏 连云港 222005;
3. 湖北文理学院计算机工程学院,湖北 襄阳 441053


关键词:机器鱼;仿生设计;二自由度胸鳍;协同推进


摘要:

针对一种新型仿暗绿鲀机器人,以提高其机动性与优化外形为目的进行研究,设计具有双自由度胸鳍和二关节尾鳍的机器鱼。它的胸鳍对称地排列在两侧,可以做拍翼和摇翼两个自由度的运动,用于推进或其他目的,如转弯和潜水。最后,进行三组实验,研究机器鱼在三种不同推进模式下的游动性能,重点在于对胸尾鳍协同推进的研究。实验结果表明,尾鳍推进和胸鳍推进的游动速度与模型预测基本吻合。此外,单独使用尾鳍推进时,游速可达0.14 m/s;单独使用胸鳍推进时,游速可达0.04 m/s;胸鳍和尾鳍协同推进转弯时,最大游速可达0.19 m/s,最大转弯速度可达0.4 rad/s,此时转弯半径为0.15 m。


design of a biomimetic robotic fish with coordinated propulsion of pectoral and caudal fins
liu weixing1,2, du yunnan1, duan changpeng2, hu wanting2, zhang zhiyang1,2, sun chengjiao3
1. school of ocean engineering, jiangsu ocean university, lianyungang 222005, china;
2. school of makarov marine engineering, jiangsu ocean university , lianyungang 222005, china;
3. college of compute engineering, hubei university of arts and science , xiangyang 441053, china
abstract: in this paper, a robotic fish with a double-degree-of-freedom pectoral fin and a two-jointed caudal fin is described. its pectoral fins are symmetrically arranged on both sides, and it can make two-degree-of-freedom motions of rowing and feathering for propulsion or other purposes such as turning and diving. finally, three sets of experiments were conducted in this paper to investigate the swimming performance of the fish in two modes: 2-degree-of-freedom pectoral fin propulsion and two-side pectoral fin and caudal fin synergistic propulsion. the experimental results show that the swimming speeds of caudal fin propulsion and pectoral fin propulsion are in general agreement with the model predictions. in addition, the swimming speed of the fish could reach 0.14 m/s when using caudal fin propulsion alone, and 0.04 m/s when using pectoral fin propulsion alone, and when the pectoral and caudal fins were used for coordinated propulsion to turn, the maximum swimming speed was up to 0.19 m/s, and the maximum turning speed was up to 0.4 rad/s, at which time the radius of turn was 0.15 m.
keywords: robot fish;biomimetic design;pectoral fin with two degrees of freedom;coordinated propulsion
2024, 50(8):11-19  收稿日期: 2024-05-14;收到修改稿日期: 2024-05-29
基金项目: 国家自然科学基金(52101356);湖北省自然科学基金计划项目(2024afb147);湖北省教育厅科学研究计划资助项目(q20222604);连云港市重点研发计划(cg2224);连云港市第六期“521工程”科研项目资助计划(lyg06521202337);国自科培育项目(2023pygpzk10)
作者简介: 刘葳兴(1990-),女,河北衡水市人,副教授,博士,研究方向为水下无人航行器仿生推进。
参考文献
[1] 郭海艳, 程亮, 杨春利, 等. 面向水面无人艇的目标检测与船舶分类系统研究[j]. 中国测试, 2023, 49(6): 114-121.
guo h y, cheng l, yang c l, et al. research on target detection and ship classification system for surface unmanned vessels[j]. china measurement & test, 2023, 49(6): 114-121.
[2] 李国洪, 周琪钧. 5r串联机器人运动学分析及其控制系统研究[j]. 中国测试, 2021, 47(11): 21-27.
li g h, zhou q j. research on kinematics analysis and control system of 5r series robot[j]. china measurement & test, 2021, 47(11): 21-27.
[3] katija k. autonomous agents for observing marine life[j]. science robotics, 2023, 8(80): eadi6428.
[4] zhang p, wu z, meng y, et al. nonlinear model predictive position control for a tail-actuated robotic fish[j]. nonlinear dynamics, 2020, 101(4): 2235-2247.
[5] lighthill m. note on the swimming of slender fish[j]. journal of fluid mechanics, 1960, 9(2): 305-317.
[6] lighthill m. large-amplitude elongated-body theory of fish locomotion[j]. proceedings of the royal society of london. series b. biological sciences, 1971, 179(1055): 125-138.
[7] yu z, li k, ji y, et al. fast motion performance of a bionic ray robot with serial pectoral fins[j]. ieee robotics and automation letters, 2023.
[8] bianchi g, tealdi m, cinquemani s. design of a bioinspired ray robot with flexible fins[c]//bioinspiration, biomimetics, and bioreplication xii. spie, 2022, 12041: 151-157.
[9] castano m, tan x. trajectory tracking control of rowing pectoral fin-actuated robotic fish[j]. ieee/asme transactions on mechatronics, 2022, 27(4): 2007-2015.
[10] zhong y, du r, guo p, et al. investigation on a new approach for designing articulated soft robots with discrete variable stiffness[j]. ieee/asme transactions on mechatronics, 2021, 26(6): 2998-3009.
[11] walker b, ishimoto k, gaffney e a. hydrodynamic slender-body theory for local rotation at zero reynolds number[j]. physical review fluids, 2023, 8(3): 034101.
[12] liu j, fu y, liu x, et al. a bar-joint model based on the corrected resistive force theory for artificial flagellated micro-swimmers propelled by acoustic waves[j]. bioinspiration & biomimetics, 2023, 18(3): 035003.
[13] eloy c, michelin s. on lighthill's elongated-body theory[j]. bulletin of the american physical society, 2023.
[14] xu m, yu y. effects of body stiffness on propulsion during fish self-propelled swimming[j]. physics of fluids, 2023, 35(7).
[15] li z, xia d, yang g, et al. hydrodynamics of the self-diving function of thunniform swimmer relying on switching the caudal fin shape[j]. journal of marine science and technology, 2023, 28(1): 326-340.

网站地图