作者:陈杰, 张伟
作者单位:国网江苏省电力有限公司电力科学研究院,江苏 南京 211100
关键词:电缆隧道;早期火情识别;模拟技术;探测系统;预警时间
摘要:
电缆隧道是市政基础设施的有机部分,其优势在于可集中布置和管理电力与通信等领域管线设备,且对地面活动影响较小。由于被埋藏于地下,在火灾情势下的救援难度较大,经济损失与人员伤亡易失控。因此,为探究电缆隧道早期火情的识别机理,有必要对其中的早期火情识别与探测进行模拟分析和研究。以实际项目中常见的t型电缆隧道为分析对象,对不同探测系统的有效性进行模拟。根据火源位置、气流速度等参数差异,对所设计5种工况进行分析,并对隧道电缆在不同工况下的温度和燃烧率进行模拟仿真。结果表明:合理敷设和间距能够降低电缆隧道火灾的温度和燃烧率;温度与烟气浓度临界值出现于交叉点处,在两端方向出现突变;若气流速度低于0.95 m/s,探测器预警失效。
study on effectiveness simulation technology of early fire identification technology in cable tunnel
chen jie, zhang wei
electric power research institute of state grid jiangsu electric power co., ltd., nanjing 211100, china
abstract: cable tunnel is an organic part of municipal infrastructure, which has the advantage of centralized layout and management of pipeline equipment in power and communication fields, and has little impact on ground activities. due to being buried and underground, it is difficult to rescue in case of fire, and economic losses and casualties are easily out of control. therefore, in order to explore the identification mechanism of early fire in cable tunnels, it is necessary to conduct simulation analysis and research on early fire identification and detection. taking the common t-shaped cable tunnel in the actual project as the analysis object, the effectiveness of different detection systems is simulated. according to the difference of fire source location, air velocity and other parameters, five working conditions have been analyzed. the simulation results have shown that reasonable laying and spacing can reduce the temperature and burning rate of cable tunnel fire, the critical values of temperature and flue gas concentration appeared at the intersection, and there were abrupt changes at both ends; the detector failed while the air velocity was lower than 0.95 m/s.
keywords: cable tunnel;early fire identification;simulation technology;detection system;warning time
2024, 50(7):191-198 收稿日期: 2022-07-11;收到修改稿日期: 2022-08-24
基金项目: 国网江苏省电力有限公司科技项目(j2020105)
作者简介: 陈杰(1984-),男,安徽淮北市人,高级工程师,博士,研究方向为电力电缆线路状态检测及评估技术、电缆防火技术。
参考文献
[1] 吴照国, 宗鹏飞, 田堃, 等. 电缆隧道封堵形态对电缆隧道火灾蔓延影响研究[j]. 武汉理工大学学报(信息与管理工程版), 2022, 44(4): 561-565.
wu z g, zong p f, tian k, et al. influence of cable tunnel plugging form on fire spread in cable tunnel[j]. journal of wuhan university of technology(information & management engineering) , 2022, 44(4): 561-565.
[2] 张辛亥, 丁峰, 张玉涛, 等. 井下烟道在巷道火灾中的作用数值模拟[j]. 煤矿安全, 2017, 48(4): 48-51.
zhang x h, ding f, zhang y t, et al. numerical analysis of underground flue effect on mine roadway fire[j]. safety in coal mines, 2017, 48(4): 48-51.
[3] panagiotis n, konstantinos k. evaluating the role of risk assessment for road tunnel fire safety: a comparative review within the eu[j]. journal of traffic and transportation engineering (english edition), 2019, 33(3): 80-94.
[4] nuianzin o, samchenko t, kasiarum s, et al. the heat exchange mathematical model of fire in cable tunnel adequacyresearch[j]. international journal of engineering & technology, 2018, 7(4): 303-307.
[5] mi h, liu y, jiao z, et al. a numerical study on the optimization of ventilation mode during emergency of cable fire in utility tunnel[j]. tunnelling and underground space technology, 2020, 100: 100-119.
[6] 戴文涛. 电缆隧道及综合管廊火灾探测报警技术研究[j]. 消防科学与技术, 2017, 36(1): 89-92.
dai w t. study on the fire detection and alarm of cable tunnel and integrated pipe gallery[j]. fire science and technology, 2017, 36(1): 89-92.
[7] 刘家军, 杜智亮, 李娟绒, 等. 铁路10 kv电力电缆头发热分析与安全监测[j]. 电力系统保护与控制, 2019, 47(24): 131-138.
liu j j , du z l, li j r, et al. thermal analysis and safety monitoring of railway 10 kv power cable joints[j]. power system protection and control, 2019, 47(24): 131-138.
[8] 石拓, 胡啸峰. 一种基于分布式推理的火情探测系统[j]. 安全与环境学报, 2019(3): 837-846.
shi t, hu x f. a renovated fire detection system based on the distributive reasoning and assessment[j]. journal of safety and environment, 2019(3): 837-846.
[9] 汪颖, 孙建风, 肖先勇, 等. 基于优化卷积神经网络的电缆早期故障分类识别[j]. 电力系统保护与控制, 2020, 48(7): 10-18.
wang y, sun j f, xiao x y, et al. cable incipient fault classification and identification based on optimized convolution neural network[j]. power system protection and control, 2020, 48(7): 10-18.
[10] 裴星宇, 黄顺涛, 崔江静, 等. 一种基于ssd的电缆隧道明火识别方法: cn108564065b[p], 2020.
[11] 王罡, 刘敬文, 李国鹏, 等. 基于多源异构数据融合的综合管廊电力舱系统保护[j]. 电力系统保护与控制, 2021, 49(7): 103-109.
wang g, liu j w, li g p, et al. system protection of a pipe corridor power cabin based on multi-source heterogeneous data fusion[j]. power system protection and control, 2021, 49(7): 103-109.
[12] 石雪怀, 戚湧, 李千目, 等. 基于深度集成模型的火灾事故预警方法[j]. 计算机应用, 2019, 39(1): 8-12.
shi x h, qi y, li q m, et al. fire accident warning approach based on deep ensemble model[j]. journal of computer applications, 2019, 39(1): 8-12.
[13] 车辉, 邢慧芬, 樊玉琦, 等. 基于大数据的火灾智能预警系统[j]. 计算机系统应用, 2020(10): 120-126.
che h, xing h f, fan y q, et al. fire intelligent early warning system based on big data[j]. journal of computer applications, 2020(10): 120-126.
[14] 黄翰鹏, 李柏林, 欧阳, 等. 融合模糊神经网络与时序模型的火灾预警算法[j]. 计算机工程与设计, 2020, 41(6): 1639-1644.
huang h p, li b l, ou y, et al. fire early warning based on fuzzy neural network and temperature time series model[j]. computer engineering and design, 2020, 41(6): 1639-1644.
[15] 陈尚, 蒋毅, 宋珍. 电力电缆火灾风险评价模型与预警信号分级[j]. 南方电网技术, 2020, 14(4): 3-7,16.
chen s, jiang y, song z. fire risk assessment model and early warning signal classification of power cable[j]. southern power system technology, 2020, 14(4): 3-7,16.
[16] 旷永华. 分布式激光火情监测系统应用及其测点部署优化[j]. 矿业安全与环保, 2020, 47(5): 99-102.
kuang y h. application and optimization of test point deployment of distributed laser fire monitoring system[j]. mining safety & environmental protection, 2020, 47(5): 99-102.

