一种抗磁性材料密度高分辨率测量方法 中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>一种抗磁性材料密度高分辨率测量方法

一种抗磁性材料密度高分辨率测量方法

427    2024-07-25

¥0.50

全文售价

作者:陈超云, 王灿, 文慧卿

作者单位:上海市计量测试技术研究院,上海 201203


关键词:计量学;有限元仿真;磁感应强度;磁力悬浮;密度测量


摘要:

针对现有抗磁性材料密度测量的磁力悬浮装置存在灵敏度低、分辨率低的问题,提出一种沿着弱磁化方向测量抗磁性材料密度的方法,以减小测量范围的方式来提高装置的分辨率。使用有限元仿真软件在磁化方向θ=0°和90°时对不同磁体间距d进行参数化扫描,得到悬浮区间的磁感应强度分布。θ=0°时,呈现磁场梯度大、测量范围大、灵敏度低、分辨率低的特点;θ=90°时,呈现磁场梯度小、测量范围小、灵敏度高、分辨率高的特点。标准玻璃浮子悬浮实验表明:θ=0°时,由于缺乏足够的灵敏度来克服浮子之间的接触、排斥作用,浮子始终呈现聚集状态;θ=90°时,且磁体间距满足d=l(磁体长度)时,分辨率提高到δρmin=0.02 kg/m3。该装置结构简单,能够区分出材料微小密度差异,适用于低质量、小尺寸、不均匀、不规则抗磁性材料的密度测量,在密度计量领域具有一定的应用前景。


a high-resolution measurement method for the density of diamagnetic materials
chen chaoyun, wang can, wen huiqing
shanghai institute of measurement and testing technology, shanghai 201203, china
abstract: aiming at the problems of low sensitivity and low resolution of existing magnetic levitation device for measuring the density of diamagnetism materials, a method for measuring the density of diamagnetic materials along the direction of weak magnetization is proposed to improve the resolution of the device by reducing the measurement range. the finite element simulation software is used to perform parametric scanning of different magnet spacing d when the magnetization direction θ=0° and 90°, and the magnetic induction intensity distribution in the levitation zone is obtained. when θ=0°, it has the characteristics of large magnetic field gradient, large measurement range, low sensitivity, and low resolution; when θ=90°, it has the characteristics of small magnetic field gradient, small measurement range, high sensitivity and high resolution. the standard glass float suspension experiment shows that: when θ=0°, the floats are always aggregated due to the lack of sufficient sensitivity to overcome the contact and repulsion between the floats; when θ=90°, and the distance between the magnets satisfies d=l (magnet length), the resolution is increased to δρmin=0.02 kg/m3. the structure of the device is simple, and it can distinguish the small density difference of the material. it is especially suitable for the density measurement of low-quality, small-sized, uneven, and irregular diamagnetic materials, and has certain application prospects in the field of density measurement.
keywords: metrology;finite element simulation;magnetic induction;magnetic levitation;density measurement
2024, 50(7):186-190  收稿日期: 2023-05-31;收到修改稿日期: 2023-07-19
基金项目:
作者简介: 陈超云(1991-),男,浙江金华市人,工程师,硕士,研究方向为密度黏度计量。
参考文献
"[1] 徐秀华. 密度测量技术[m]. 北京: 中国计量出版社, 2021.
[2] 魏传喆, 潘江, 王功明. 一种直接驱动式振动管密度计研究[j]. 中国测试, 2020, 46(6): 83-88.
wei c z, pan j, wang g m. research on a direct drive vibration tube density meter[j]. china measurement & test, 2020, 46(6): 83-88.
[3] david k b, martin m t, manza b j a, et al. paramagnetic ionic liquids for measurements of density using magnetic levitation[j]. analytical chemistry, 2013, 85(17): 8442-8447.
[4] 刘春程, 方肖勇, 李修远, 等. 电磁mems微镜贴片封装残余应力测试与特性研究[j]. 仪表技术与传感器, 2023(6): 18-25.
liu c c, fang x y, li x y, et al. die bonding residual stress measurement and characteristics of electromagnetic mems micromirror[j]. instrument technique and sensor, 2023(6): 18-25.
[5] 赵帅杰, 张吉堂, 周俊峰, 等. 基于高温emat铁磁性材料的声速变化规律研究[j]. 中国测试, 2022, 48(9): 1-6.
zhao s j, zhang j t, zhou j f, et al. study on the variation of sound velocity based on high temperature emat ferromagnetic materials[j]. china measurement & test, 2022, 48(9): 1-6.
[6] 张承谦, 赵朋, 颉俊, 等. 抗磁性高密度物质的磁悬浮密度测量方法[j]. 浙江大学学报(工学版), 2018, 52(4): 613-618.
zhang c q, zhao p, xie j, et al. density measurement by magnetic levitation for diamagnetic high-density materials[j]. journal of zhejiang university(engineering science), 2018, 52(4): 613-618.
[7] nemiroski, alex, kumar, a. a. , soh, siowling, et al. high-sensitivity measurement of density by magnetic levitation[j]. analytical chemistry, 2016, 88(5): 2666-2674.
[8] 刘丽辉, 谢瑞芳, 陈棣湘, 等. 基于arm和fpga的双核电磁无损检测系统[j]. 中国测试, 2016, 42(1): 65-68.
liu l h, xie r f, chen d x, et al. double-core electromagnetic nondestructive testing system based on arm and fpga[j]. china measurement & test, 2016, 42(1): 65-68.
[9] 任飞安, 许金鑫, 由强, 等. 能量天平永磁体系统的温度场分析[j]. 计量学报, 2019, 40(3): 353-360.
ren f a, xu j x, you q, et al. thermal analysis of permanent-magnet system in the joule balance[j]. acta metrologica sinica, 2019, 40(3): 353-360.
[10] 丁安梓. 基于负磁泳的双磁环式磁悬浮技术及应用研究[d]. 武汉: 华中科技大学, 2021.
ding a z. research on the negative magnetophoresis-based magnetic levitation technology and its performances[d]. wuhan: huazhong university of science and technology, 2021.
[11] mirica k a, phillips s t, mace c r. magnetic levitation in the analysis of foods and water[j]. journal of agricultural & food chemistry. 2010, 58(11): 6565–6569.
[12] 陈超云, 王灿, 文慧卿. 基于comsol的铁磁性材料密度数值模拟[j]. 计量技术, 2019(1): 14-17.

网站地图