基于增量mpc和转向角优化的泊车轨迹跟踪研究 中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>基于增量mpc和转向角优化的泊车轨迹跟踪研究

基于增量mpc和转向角优化的泊车轨迹跟踪研究

476    2024-07-25

¥0.50

全文售价

作者:徐佳宝1,2, 张国良1,2, 汪坤1,2

作者单位:1. 四川轻化工大学自动化与信息工程学院,四川 宜宾 644000;
2. 人工智能四川省重点实验室,四川 宜宾 644000


关键词:轨迹跟踪;模型预测控制;转向角;卡尔曼滤波


摘要:

针对传统模型预测控制(model predictive control, mpc)下泊车过程中轨迹跟踪精度较低且实时性较差的问题,提出一种改进的mpc控制方法。首先,基于车辆运动学模型,加入控制量和控制增量约束,设计增量mpc控制器,提升轨迹跟踪精度;其次,根据车辆当前状态,利用卡尔曼滤波算法优化转向角,防止转向角出现突变的情况;最后,通过搭建matlab/simulink与carsim联合仿真环境,将增量mpc控制器与mpc控制器进行对比分析。实验结果表明:在平行泊车工况下,增量mpc比mpc的最大横向误差小6.3 cm,最大航向误差小1.23°。在垂直泊车工况下,增量mpc最大横向误差比mpc小7 cm,最大航向误差小0.46°。仿真结果验证该轨迹跟踪控制器具有较好的控制性能。


research on parking trajectory tracking based on incremental mpc and steering angle optimization
xu jiabao1,2, zhang guoliang1,2, wang kun1,2
1. school of automation and information engineering, sichuan university of science & engineering, yibin 644000, china;
2. artificial intelligence key laboratory of sichuan province, yibin 644000, china
abstract: aiming at the problem of low tracking accuracy and poor real-time performance in parking process under traditional model predictive control (mpc), an improved mpc control method is proposed. firstly, based on the vehicle kinematics model, the incremental mpc controller is designed by adding control quantity and control increment constraints to improve the tracking accuracy; secondly, according to the current state of the vehicle, the kalman filter algorithm is used to optimize the steering angle to prevent sudden changes in the steering angle; finally, by building a joint simulation environment of matlab/simulink and carsim, the incremental mpc controller is compared with the mpc controller. the experimental results show that under parallel parking conditions, the maximum lateral error of incremental mpc is 6.3 cm less than that of mpc, and the maximum heading error is 1.23 ° less. under the condition of vertical parking, the maximum lateral error of incremental mpc is 7cm smaller than mpc, and the maximum heading error is 0.46 ° smaller. the simulation results show that the trajectory tracking controller has good control performance.
keywords: trajectory tracking;model predictive control;steering angle;kalman filtering
2024, 50(7):170-177  收稿日期: 2022-09-07;收到修改稿日期: 2022-12-05
基金项目: 四川省应用基础研究项目(2019yj4013);四川轻化工大学研究生创新基金(y2022142)
作者简介: 徐佳宝(1999-),男,四川内江市人,硕士研究生,专业方向为轨迹跟踪与机器人控制。
参考文献
[1] 李红. 自动泊车系统路径规划与跟踪控制研究[d]. 长沙:湖南大学, 2014.
li h. research on path planning and tracking control of automatic parking systems [d]. changsha :hunan university, 2014.
[2] 李永丹, 马天力, 陈超波, 等. 无人驾驶车辆路径规划算法综述[j]. 国外电子测量技术, 2019, 38(6): 72-79.
li y d, ma t l, chen c b, et al. overview of path planning algorithms for autonomous vehicles[j]. foreign electronic measurement technology, 2019, 38(6): 72-79.
[3] 唐圣学, 孙志国, 宋晓. 基于lyapunov控制的多约束模型预测控制方法[j]. 电子测量技术, 2022, 45(1): 172-176.
tang s x, sun z g, song x. a multi constraint model predictive control method based on lyapunov control[j]. electronic measurement technology, 2022, 45(1): 172-176.
[4] 杨博, 张缓缓, 江忠顺. 智能车辆的避障路径规划与跟踪控制仿真分析[j]. 中国测试, 2021, 47(7): 71-78.
yang b, zhang q h, jiang z s. simulation analysis of obstacle avoidance path planning and tracking control for intelligent vehicles[j]. china measurement & test, 2021, 47(7): 71-78.
[5] paolo f, francesco b, et al. predictive active steering control for autonomous vehicle systems[j]. ieee transaction on control systems technology, 2007, 15(3): 566-580.
[6] francesco b, paolo f. mpc-based approach to active steering for autonomous vehicle systems[j]. international journal on vehicle autonomous systems, 2005, 3(2-4): 265-291.
[7] 胡远志, 何朋声, 刘西. 基于模型预测控制的平行泊车控制方法[j]. 重庆理工大学学报(自然科学), 2020, 34(10): 1-8.
hu y z, he p s, liu x. parallel parking control method based on model predictive control[j]. journal of chongqing university of technology (natural science), 2020, 34(10): 1-8.
[8] 顾青, 白国星, 孟宇, 等. 基于非线性模型预测控制的自动泊车路径跟踪[j]. 工程科学学报, 2019, 41(7): 947-954.
gu q, bai g x, meng y, et al. automatic parking path tracking based on nonlinear model predictive control[j]. chinese journal of engineering, 2019, 41(7): 947-954.
[9] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[m]. 北京: 北京理工大学出版社, 2014.
gong j w, jiang y, xu w. model predictive control for autonomous vehicles [m]. beijing: beijing institute of technology press, 2014.
[10] 吕沛龙, 丁宝苍, 王丽, 等. 基于增量状态空间模型的双层预测控制[j]. 控制工程, 2021, 28(10): 1923-1930.
lv p l, ding b c, wang l, et al. double layer predictive control based on incremental state space model[j]. control engineering, 2021, 28(10): 1923-1930.
[11] falcone p. nonlinear model predictive control for autonomous vehicles[d]. benevento: university of sannio, 2007.
[12] 陈虹. 模型预测控制[m]. 北京:科学出版社, 2013.
chen h. model predictive control [m]. beijing:science press, 2013.
[13] 郭孔辉, 付皓, 丁海涛. 基于扩展卡尔曼滤波的汽车质心侧偏角估计[j]. 汽车技术, 2009(4): 1-3.
guo k h, fu h, ding h t. estimation of automobile center of mass lateral angle based on extended kalman filter[j]. automobile technology, 2009(4): 1-3.
[14] 章仁燮, 熊璐, 余卓平. 智能汽车转向轮转角主动控制[j]. 机械工程学报, 2017, 53(14): 106-113.
zhang r x, xiong l, yu z p. active control of steering wheel angle in intelligent vehicles[j]. journal of mechanical engineering, 2017, 53(14): 106-113.

网站地图