作者:胡坦能1, 高鸿波1, 崔凯歌2, 朱秀森1, 张士晶1, 何溦3, 薛泉3, 黄秋艳3
作者单位:1. 南昌航空大学 无损检测技术教育部重点实验室,江西 南昌 330063;
2. 中国航发沈阳发动机研究所,辽宁 沈阳 110027;
3. 贵州航宇科技发展股份有限公司,贵州 贵阳 550081
关键词:涡轮叶片;ct重建与扫描;三维可视化;裂纹提取
摘要:
针对航空发动机叶片厚度不均,内部结构复杂造成的ct检测重建质量差的问题,以某型内部含有裂纹的涡轮叶片为研究对象,设计不同的扫描参数,进行不同扫描参数下的ct扫描与重建,实现了叶片轮廓的三维可视化,讨论透照管电压和管电流、伪影抑制算法、投影图像数量、图像滤波对重建质量的影响,通过研究和评价涡轮叶片的成像质量,实现叶片轮廓的高质量三维成像,推动显微ct技术在叶片检测上的应用。
study on quality optimization of turbine blade reconstruction based on micro ct
hu tanneng1, gao hongbo1, cui kaige2, zhu xiusen1, zhang shijing1, he wei3, xue quan3, huang qiuyan3
1. key laboratory of nondestructive testing (ministry of education), nanchang hangkong university, nanchang 330063, china;
2. aecc shenyang engine design institute, shenyang 110027, china;
3. guizhou aviation technical development co., ltd., guiyang 550081, china
abstract: in order to solve the problem of poor ct detection and reconstruction quality caused by uneven thickness of aero-engine blades and complex internal structure, a certain type of turbine blade with internal cracks was used as the research object. different scanning parameters were designed and ct scans under different scanning parameters were conducted. with reconstruction, the three-dimensional visualization of the blade profile was realized. the effects of transillumination tube voltage and tube current, artifact suppression algorithm, number of projected images, and image filtering on the reconstruction quality were discussed. by studying and evaluating the imaging quality of turbine blades, the blade profile was realized high-quality three-dimensional imaging promotes the application of micro-ct technology in blade inspection.
keywords: turbine blade;ct scan and reconstruction;3d visualization;extraction of crack
2023, 49(12):41-46,53 收稿日期: 2023-07-05;收到修改稿日期: 2023-09-07
基金项目: 南昌航空大学研究生创新专项资金项目(yc2022-s742)
作者简介: 胡坦能(1996-),男,江西南昌市人,硕士研究生,专业方向为数字射线检测及检测软件开发。
参考文献
[1] 李洪松, 刘永葆, 贺星, 等. 考虑耦合损伤的燃气轮机叶片材料高低周符合疲劳寿命研究[j]. 推进技术, 2022, 43(2):7-13.
[2] lakshmi m r, mondal a k, jadhav c k, et al. overview of ndt methods applied on an aero engine turbine rotor blade[j]. insight-non-destructive testing and condition monitoring, 2013, 55(9):482-486.
[3] 温银堂, 张松, 张玉燕, 等. 新型复合材料界面粘接缺陷的ct检测及表征[j]. 中国测试, 2020, 46(1):12-17.
[4] 赵付宝, 孙良文, 汤振鹤, 等. 复合材料构件的x射线数字成像检测[j]. 中国测试, 2021, 47(s2):92-95.
[5] yang r, he y, zhang h. progress and trends in nondestructive testing and evaluation for wind turbine composite blade[j]. renewable and sustainable energy reviews, 2016, 60:1225-1250.
[6] 程云勇, 张定华, 卜昆, 等. 基于工业ct测量数据的空心涡轮叶片三维壁厚分析[j]. 机械强度, 2009, 31(5):791-796.
[7] 闵吉磊. 基于微米ct成像技术的涡轮叶片热障涂层三维结构分析[d]. 南昌:南昌航空大学, 2015.
[8] 段晓礁, 唐天旭, 周志政, 等. 涡轮叶片锥束微纳ct散射校正[j]. 仪器仪表学报, 2020, 41(12):39-47.
[9] 高显亮, 高鸿波, 崔凯歌, 等. 涡轮叶片锥束ct重建质量优化[j]. 铸造, 2020, 69(5):510-516.
[10] salehnasab b, poursaeidi e. mechanism and modeling of fatigue crack initiation and propagation in the directionally solidified cm186 lc blade of a gas turbine engine[j]. engineering fracture mechanics, 2020, 225.
[11] amenabar i, mendikute a, lopez-arraiza a, et al. comparison and analysis of non-destructive testing techniques suitable for delamination inspection in wind turbine blades[j]. composites part b, 2011, 42(5):1298-1305.
[12] 郝挺. 锥束x-ct成像的分辨率性能评估[d]. 天津:天津大学, 2017.
[13] 肖雄晖, 吴伟, 梁毅, 等. dr平板探测器图像校正方法研究[j]. 中国测试, 2021, 47(9):7-14.
[14] 孔小丽, 金永, 王召巴. 一种光栅条纹图像非线性矫正算法的dsp实现[j]. 中国测试, 2015, 41(4):66-69.
[15] 牛晓伟. ct重建图像伪影校正算法研究[d].太原:中北大学, 2023..
[16] 孙朝明, 孙忠诚, 曾祥照. 数字射线成像中归一化信噪比指标的分析讨论[j]. 无损检测, 2017, 39(10):42-48.

