基于fddtw的智慧供热系统供温效果在线评估方法中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>基于fddtw的智慧供热系统供温效果在线评估方法

基于fddtw的智慧供热系统供温效果在线评估方法

2043    2023-06-27

免费

全文售价

作者:胡雨寒1, 曾九孙1, 王飞2, 郜传厚3

作者单位:1. 中国计量大学计量测试工程学院, 浙江 杭州 310018;
2. 华为技术有限公司, 广东 深圳 518129;
3. 浙江大学数学科学学院, 浙江 杭州 310027


关键词:智慧供热系统;供热效果评估;箱线图;快速导数动态时间规整


摘要:

随着智慧供热系统建设的不断推进,我国北方地区冬季供热的智能化水平得到重大提升。作为智慧供热系统实现智能化运行的基础,如何实现高效、精准的供热效果评估成为重要的研究课题。该文针对现有评估方法在快速性和准确性方面存在的缺陷,提出一种基于快速导数动态时间规整(fast derivative dynamic time warping,fddtw)的供热效果在线评估方法。利用箱线图获取最优参考供温曲线,再将终端用户室温计量装置实时采集到的数据进行滑窗处理,并利用fddtw计算当前窗口供温曲线和最优参考供温曲线之间的距离,通过fddtw评估得分判断当前供温效果是否满足实际要求。相较于传统的动态时间规整算法,该算法改善奇异性、提高效率,为智慧供热系统提供切实可行的供热效果在线评估方法。


online evaluation method of temperature supply effect of smart heating system based on fddtw
hu yuhan1, zeng jiusun1, wang fei2, gao chuanhou3
1. college of metrology and measurement engineering, china jiliang university, hangzhou 310018, china;
2. huawei technologies corporation limited, shenzhen 518129, china;
3. school of mathematical sciences, zhejiang university, hangzhou 310027, china
abstract: with the continuous advancement of the construction of smart heating systems, the level of smart heating in winter in northern my country has been greatly improved. as the basis for the intelligent operation of the smart heating system, how to achieve efficient and accurate heating effect evaluation has become an important research topic. aiming at the shortcomings of existing evaluation methods in terms of rapidity and accuracy, this paper proposes an online heating effect evaluation method based on fast derivative dynamic time warping (fddtw). first use the box plot to obtain the optimal reference temperature supply curve, and then process the real-time data collected by the end user room temperature metering device for sliding window processing, and use fddtw to calculate the distance between the current window temperature supply curve and the optimal reference temperature supply curve, judge whether the current heating effect meets the actual requirements through the fddtw evaluation score. compared with the traditional dynamic time warping algorithm, this algorithm improves the singularity and efficiency, and provides a feasible online heating effect evaluation method for the smart heating system.
keywords: smart heating system;heating effect evaluation;box plot;fast derivative dynamic time regulation
2023, 49(6):181-188  收稿日期: 2022-03-17;收到修改稿日期: 2022-04-18
基金项目: 国家重点研发计划资助项目(2018yff2014701)
作者简介: 胡雨寒(1998-),女,江西吉安市人,硕士研究生,专业方向为智慧供热大数据分析
参考文献
[1] 钟崴, 陆烁玮, 刘荣. 智慧供热的理念、技术与价值[j]. 区域供热, 2018(2): 1-5
[2] 于浩淼. 物联网发展及应用前景分析[j]. 通信电源技术, 2019, 36(11): 142-144
[3] rifkin j. the third industrial revolution: how lateral power is transforming energy, the economy, and the world[m]. new york: palgrave macmillan, 2013.
[4] 徐君. 智慧化供热的发展[c]. // 2019供热工程建设与高效运行研讨会论文集(下). 2019: 191-192.
[5] 李爽, 冉春雨, 王杨洋. 国内外集中供热信息化和数据共享平台建设的现状分析[j]. 中国新通信, 2019, 21(21): 57-58
[6] chai l, ma c, ni j q. performance evaluation of ground source heat pump system for greenhouse heating in northern china[j]. biosystems engineering, 2012, 111(1): 107-117
[7] li r, yoshidomi t, ooka r, et al. field evaluation of performance of radiant heating/cooling ceiling panel system[j]. energy and buildings, 2015, 86: 58-65
[8] 郭汉丁, 丁鑫, 李邵红. 基于改进层次法的城市集中供热特许经营主体选择评价[j]. 价值工程, 2015, 34(21): 249-252
[9] 李丽, 王乐乐. 基于模糊综合评价的集中供热方案选择[j]. 区域供热, 2013(4): 83-88
[10] gao w, wang y, yang l, et al. performance evaluation for solar combined gas heating system[j]. renewable energy, 2021: 167
[11] tiwari a, sodha m s. performance evaluation of hybrid pv/thermal water/air heating system: a parametric study[j]. renewable energy, 2006, 31(15): 2460-2474
[12] 刁海璨, 李智康, 朱壮明. 基于熵权法的输变电重大工程综合效益后评价[j]. 中国市场, 2017(36): 49-50
[13] 商立群, 王守鹏. 改进主成分分析法在火电机组综合评价中的应用[j]. 电网技术, 2014, 38(7): 1928-1933
[14] 黄伟, 程显. 配电网建设后评估分析方法及应用[j]. 河南电力, 2016(7): 11-14
[15] sakoe h, chiba s. dynamic programming algorithm optimization for spoken word recognition[j]. ieee transactions on acoustics, speech, and signal processing, 1978, 26(1): 43-49
[16] salvador s, chan p. toward accurate dynamic time warping in linear time and space[j]. intelligent data analysis, 2007, 11(5): 561-580
[17] 王印松, 马娉妍. 一种基于改进马氏距离的mimo系统性能评价方法[j]. 中国测试, 2020, 46(6): 101-107
[18] 方修睦. 智慧供热的内涵与目标[j]. 煤气与热力, 2019, 12(7): 1-7
[19] 胡乔良, 李伟, 郜宁等. 基于供热负荷的吸收式热泵供热机组变工况性能分析[j]. 中国测试, 2020, 46(11): 163-168
[20] 韩钊, 袁建娟, 孙春华等. 基于信息化的智慧热网系统应用分析[j]. 区域供热, 2018(2): 24-30
[21] 刘向东. 潍坊市智慧供热的发展应用与探讨[j]. 区域供热, 2020(3): 67-69
[22] jeong y s, jeong m k, omitaomu o. a. weighted dynamic time warping for timeseries classification[j]. pattern recognition, 2011, 44(9): 2231-2240
[23] 沈培璐, 汪朝海, 钱源来等. 基于特征的时间序列信号表示方法[j]. 中国测试, 2020, 46(5): 13-18
[24] keogh e j, pazzani m j. derivative dynamic time warping[c]. // proceedings of the 2001 siam international conference on data mining. society for industrial and applied mathematics. philadelphia, pa: siam, 2001: 1-11.

网站地图