作者:李小娟1, 何巍1, 汤一尧1, 高世刚1, 谢延凯1, 梁文辉2
作者单位:1. 国网甘肃省电力公司电力科学研究院, 甘肃 兰州 730070;
2. 重庆大学 输配电装备及系统安全与新技术国家重点实验室, 重庆 400030
关键词:变电站;变压器;模拟电荷法;遗传算法;电抗器;工频电场
摘要:
传统的模拟电荷法需要人工布点,而为得出更准确的计算结果,人工布点往往需要多次调整模拟电荷的参数,对于场源复杂的情况实行起来较为困难,而优化算法则可以自动寻找最优参数。变压器对户内变电站的工频电场整体分布影响较大,采用遗传算法优化模拟电荷法对户内变电站的变压器区域和限流电抗器室进行计算。结果表明,计算时间加快45.13%,线路和设备与外墙的电位误差分别降低97.97%与64.03%,其中线路电位误差降低得较为显著。变压器室在距离地面1.5 m高的平面上工频电场分布在5.97~278.54 v/m之间,限流电抗器室1.5 m高的电场整体分布在4.86~651.88 v/m之间,均没有超过我国工频电场公众暴露限值。计算结果与测量结果较为吻合,可为在设计阶段优化变电站工频电场分布提供参考。
electric field analysis of 220 kv indoor substation based on ga-csm
li xiaojuan1, he wei1, tang yiyao1, gao shigang1, xie yankai1, liang wenhui2
1. state grid gansu electric power science research institute, lanzhou 730070, china;
2. state key laboratory of transmission and distribution equipment and system safety and new technology, chongqing university, chongqing 400030, china
abstract: the traditional analog charge method requires manual distribution of points. in order to obtain more accurate calculation results, the parameters of analog charge often need to be adjusted many times. it is difficult to implement in the case of complex field source, and the optimization algorithm can automatically find the optimal parameters. the transformer has a great impact on the overall distribution of power frequency electric field in indoor substation. the transformer area and current limiting reactor room of indoor substation are calculated by using genetic algorithm optimized simulated charge method. the calculation results show that the calculation time is accelerated by 45.13% by using genetic algorithm optimized simulated charge method, the potential errors on the line, equipment and external wall are reduced by 97.97% and 64.03% respectively, among which the potential error on the line is significantly reduced. the power frequency electric field in the transformer room is distributed between 5.97-278.54 v/m on the plane 1.5 m high from the ground, and the 1.5 m high electric field in the current limiting reactor room is distributed between 4.86-651.88 v/m as a whole, which does not exceed the public exposure limit of power frequency electric field in china. the calculated results are in good agreement with the measured results, which can provide a reference for optimizing the power frequency electric field distribution of substation in the design stage.
keywords: substation;transformer;analog charge method;genetic algorithm;reactor;power frequency electric field
2023, 49(6):166-171 收稿日期: 2021-09-24;收到修改稿日期: 2021-11-25
基金项目:
作者简介: 李小娟(1983-),女,甘肃兰州市人,正高级工程师,硕士,研究方向为电力环境保护、电磁环境监测、电磁场仿真等
参考文献
[1] 高世刚, 岳斌, 李军. 变电站电磁环境研究现状综述[j]. 环境保护前沿, 2020, 10(6): 6
[2] 张波, 何金良, 刘吉克, 等. 云数据中心与高压变电站共站时的工频磁场环境特征[j]. 高电压技术, 2015, 41(11): 3812-3820
[3] 罗佳祺. 变电站复杂电磁环境对短距离无线通信性能以及人脑 sar 影响研究[d]. 北京: 北京邮电大学, 2018.
[4] 张蓉. 城市全户内变电站建筑设计研究[d]. 北京: 北京建筑大学, 2017.
[5] 夏泉, 杨然静. 城市户内变电站设计建设与发展趋势[j]. 电力勘测设计, 2018(s2): 24-28
[6] 丁钰, 吴杨, 王卓, 等. 变电站建筑电气标准化设计方法研究[j]. 内蒙古电力技术, 2021, 39(3): 76-80
[7] volodymyr r, volodymyr g. electromagnetic field in buildings closed to overhead lines[c]//2017 ieee first ukraine conference on electrical and computer engineering (ukrcon), 2017.
[8] 陈宝才, 吴慧体, 许明发. 城区中全户内变电站电磁辐射环境影响分析研究[j]. 环境科学与管理, 2014, 39(2): 182-185
[9] 江世雄. 不同类型典型变电站工频电磁场强度分布特征研究[j]. 价值工程, 2018, 37(12): 188-190
[10] 王旭旭, 李永明, 邹岸新, 等. 超高压输电线下复杂场景的工频电场分析[j]. 中国测试, 2018, 44(4): 7
[11] 李永明, 杨骏, 邹岸新, 等. 500 kv超高压输电线下山坡周围工频电场分析[j]. 电测与仪表, 2017, 54(6): 30-36
[12] 张韵, 钟慧超, 张春江, 等. 基于机器学习的多策略并行遗传算法[j/ol]. 计算机集成制造系统: 1-16[2021-09-15]. http://kns.cnki.net/kcms/detail/11.5946.tp.20210329.1316.010.html.
[13] 刘哲. 基于openmp并行算法的输变电系统工频电场计算的高效方法研究[d]. 重庆: 重庆大学, 2019.
[14] 张光明. 全户内变电站主变压器与gis连接方法研究[j]. 山东电力技术, 2017, 44(9): 39-42
[15] 李永明, 汪小莞, 杨勃, 等. 粒子群优化模拟电荷法在hgis工频电场计算中的应用[j/ol]. 电测与仪表: 1-7[2021-09-15]. http://kns.cnki.net/kcms/detail/23.1202.th.20201126.1601.005.html.

