gaussian与ga风电场尾流软测量建模与优化中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>gaussian与ga风电场尾流软测量建模与优化

gaussian与ga风电场尾流软测量建模与优化

1799    2023-06-27

免费

全文售价

作者:刘南南, 关中杰

作者单位:中车山东风电有限公司风电装备研究所, 山东 济南 250022


关键词:软测量;高斯模型;遗传算法;风电场;尾流效应;尾流优化


摘要:

由于风电场内机组间存在尾流效应,影响风电场整体发电量,导致风电场收益降低。而尾流效应又很难观测,为削弱风电场尾流效应对发电量的影响,对尾流软测量、尾流优化方法展开研究。根据过程机理建模方法,基于jensen尾流模型和高斯(gaussian)风速模型,建立风电场机组尾流模型,基于模型进行尾流仿真计算,分析尾流效应对机组发电功率的影响,并采用遗传算法(ga)对风电机组偏航角进行优化,合理优化机组间的尾流影响,最后基于实际风场案例进行仿真实验研究。通过研究发现,应用所述理论与方案,实验风场整体发电量可提升1.5%,在提升发电收益的同时也减少碳排放。


modeling and optimization of wind farm wake soft sensing based on gaussian and ga
liu nannan, guan zhongjie
wind power equipment research institute, crrc shandong wind power co., ltd., jinan 250022, china
abstract: due to the wake effect between units in the wind farm, the overall power generation of the wind farm is affected, resulting in the reduction of the income of the wind farm. in order to weaken the influence of wind farm wake effect on power generation, the wake soft sensing and wake optimization methods are studied. according to the process mechanism modeling method, the wake model of wind farm unit is established based on jensen wake model and gaussian wind speed model. the wake simulation calculation is carried out based on the model to analyze the influence of wake effect on unit power. genetic algorithm (ga) is used to optimize the yaw angle of wind turbine unit and reasonably optimize the wake effect between units, finally, the simulation experiment is carried out based on the actual wind field case. it is found that the application of the theory and scheme can increase the overall power generation of the experimental wind farm by 1.5%, improve the power generation income and reduce the carbon emission at the same time.
keywords: soft sensing;gaussian model;genetic algorithm;wind farm;wake effect;wake optimization
2023, 49(6):107-113  收稿日期: 2021-10-13;收到修改稿日期: 2022-02-10
基金项目:
作者简介: 刘南南(1990-),男,山东济南市人,工程师,硕士,研究方向为风电机组先进控制技术
参考文献
[1] 胡丹梅, 霍能萌, 杨官奎,等. 风向变化对风力机尾流影响的数值分析[j]. 动力工程学报, 2017, 37(1): 60-65
[2] 苏勋文, 赵振兵, 陈盈今,等. 尾流效应和时滞对风电场输出特性的影响[j]. 电测与仪表, 2010, 47(3): 28-31
[3] 赵飞, 李岳, 蔚步超,等. 尾流效应下偏航对风电机组功率的影响[j]. 电测与仪表, 2020, 57(9): 97-102
[4] johnson k e, thomas n. wind farm control: addressing the aerodynamic interaction among wind turbines[c]. conference on american control conference. ieee press, 2009: 2104-2109.
[5] 王俊, 段斌, 苏永新. 基于尾流效应的海上风电场有功出力优化[j]. 电力系统自动化, 2015, 23(4): 456-463
[6] tian j, su c, soltani m. active power dispatch method for a wind farm central controller considering wake effect[c]. conference of the ieee industrial electronics society. ieee, 2015: 5450-5456.
[7] 周玥. 基于智慧风场概念的风电场发电量最大化控制策略的研究[d]. 天津: 河北工业大学, 2017.
[8] allagui m, abbes m, hasnaoui o b k. optimization of the wind farm energy capture by minimizing the wake effects[j]. researchgate, 2015, 28(21): 742-749
[9] 杨培宏, 胡庆林, 付盼,等. 考虑风速风向变化及尾流效应的风电场建模[j]. 可再生能源, 2016, 34(5): 692-698
[10] 曹娜, 于群, 王伟胜,等. 风电场尾流效应模型研究[j]. 太阳能学报, 2016, 37(1): 222-229
[11] 曾利华, 王丰, 刘德有. 风电场风机尾流及其迭加模型的研究[j]. 中国电机工程学报, 2011, 31(19): 37-42
[12] 陈晓明. 风场与风力机尾流模型研究[d]. 兰州: 兰州理工大学, 2010.
[13] 张继红, 冀伟成. 基于改进遗传算法的光伏系统储能优化配置[j]. 中国测试, 2021, 47(1): 160-168
[14] 张永涛, 曹喜果. 改进遗传模拟退火算法在电站机组协调控制系统辨识中的应用[j]. 中国测试, 2020, 46(8): 131-136
[15] 许帅, 邓智文. 偏航工况下风电机组尾流模型与风电场尾流叠加研究[j]. 节能科技, 2018, 4(5): 27-29,49

网站地图