作者:杨树坤1, 杨佩2, 李翔1, 郭宏峰1
作者单位:1. 中海油田服务股份有限公司油田生产事业部,天津 300459;
2. 西安石油大学电子工程学院,陕西 西安 710065
关键词:原油含水率;微波透射法;vivaldi天线;传输系数
摘要:
微波透射法原油含水率测量仪设计的关键点是微波传感器的小型化,即要求微波传感器的辐射口径面必须小于油管的内径。为解决这一技术难题,一种辐射口径面为70 mm×2 mm的 vivaldi天线被提出,由于该天线的2 mm厚度远小于油管内径,因此可应用于任意尺寸油管进行含水率测试,非常符合微波透射法含水率的测试需求。通过测试结果可以看出:所设计的vivaldi天线工作频带为2.5~8 ghz(工作带宽为110%)。将所设计的vivaldi天线应用于微波透射法原油含水率测量仪作为微波传感器,分析传输系数与含水率之间的变化关系。测试结果表明:vivaldi天线在0~100%范围内测试的绝对误差小于7%,而在10%~85%范围内绝对误差小于5%。该实验结果,为以后测量系统实现含水率的高精度测量和在线测量提供理论依据和实际参考。
design of vivaldi antenna based crude oil water content measuring instrument
yang shukun1, yang pei2, li xiang1, guo hongfeng1
1. oilfield production division, china oilfield services co., ltd., tianjin 300459, china;
2. school of electronic engineering, xi’an shiyou university, xi’an 710065, china
abstract: the key to the design of the microwave transmission method based crude oil water content measuring instrument is the miniaturization of the microwave sensor, where the radiation aperture surface of the microwave sensor must be smaller than the diameter of the oil tubing. in order to solve this technical problem, a vivaldi antenna with a radiating aperture of 70 mm×2 mm was proposed. since the 2 mm thickness of the antenna is much smaller than the tubing diameter, then it can be applied to any size tubing for water content testing, which is very suitable for the measurement requirements of the microwave transmission method based water content. it can be seen through measurement simulation that the working frequency band of the designed antenna is 2.5 - 8 ghz (working bandwidth of 110%). the designed vivaldi antenna is applied to the microwave-based crude oil water content measuring instrument as a microwave sensor for analyzing the relationship between the transmission coefficient and the water content. measurement results show that the absolute error of the vivaldi antenna is less than 7% in the range of 0-100%, and the absolute error is less than 5% in the range of 10%-85%. the measurement results provide a theoretical basis and practical reference for the future measurement system to achieve high-precision measurement and online measurement of water content.
keywords: crude oil water content;microwave transmission method;vivaldi antenna;transmission coefficient
2023, 49(2):144-152 收稿日期: 2021-09-13;收到修改稿日期: 2021-10-19
基金项目: 中海油服科技攻关项目(ysb19yf020);中国博士后科学基金(2021m693890)
作者简介: 杨树坤(1986-),男,天津市人,工程师,硕士,主要从事油工艺技术方向的研究
参考文献
[1] 马文涛, 郭文阁, 雍振, 等. 原油含水率测量技术综述[j]. 重庆科技学院学报(自然科学版), 2016, 18(3): 46-49
[2] 唐颖, 崔立宏. 原油含水率测量技术综述[j]. 石油知识, 2019, 3: 48-49,51
[3] 郑永建, 张振朝, 牛棚满, 等. 基于伽马射线技术的油井含水率神经网络预测[j]. 自动化仪表, 2021, 42(3): 21-24,29
[4] 李林. x射线法油水两相流测量技术研究[d]. 西安:西安石油大学, 2019.
[5] lu z q, yang x, zhao k, et al. non-contact measurement of the water content in crude oil with all-optical detection[j]. energy & fuels, 2015, 29: 2919-2922
[6] tanaka t, avramidis s, shida s. evaluation of moisture content distribution in wood by soft x-ray imaging[j]. journal of wood science, 2009, 55: 69-73
[7] kim c k, oh j k, hong j p, et al. dual-energy x-ray absorptiometry with digital radiograph for evaluating moisture content of green wood[j]. wood science and technology, 2015, 49(4): 713-723
[8] zhang h, zhai l, han y, et al. response characteristics of coaxial capacitance sensor for horizontal segregated and non-uniform oil-water two-phase flows[j]. ieee sensors journal, 2017, 17(2): 359-368
[9] cui j, chan p k. a low-power capacitive transducer for portable electrical capacitance tomography with high dynamic range[j]. ieee sensors journal, 2011, 11(12): 3388-3399
[10] zubair m, tang t. a high resolution capacitive sensing system for the measurement of water content in crude oil[j]. sensors, 2014, 14: 11351-11361
[11] 张勇, 孙震宇, 薛程雄, 等. 基于介电常数法的润滑油水含量测量装置设计[j]. 中国测试, 2020, 46(4): 86-90
[12] schuller r b, gundersen t, halleraker m, et al. measurement of water concentration in oil/water dispersions with a circular single-electrode capacitance probe[j]. ieee transactions on instrumentation & measurement, 2004, 53(5): 1378-1383
[13] chen x, han y f, ren y y, et al. water holdup measurement of oil-water two-phase flow with low velocity using a coaxial capacitance sensor[j]. experimental thermal and fluid science, 2017, 81: 244-255
[14] 尤波, 孙瑞达, 张天勇. 基于电导法的原油含水率测量改进方法[j]. 传感技术学报, 2019, 32(9): 1308-1312
[15] 贾惠芹, 戴阳. 螺旋天线原油含水率测量仪的误差分析与校准[j]. 中国测试, 2021, 47(3): 116-121,158
[16] 徐鑫. 射频法原油含水率测量系统研究及参数优化[d]. 西安: 西安石油大学, 2020.
[17] 贺国强, 党瑞荣, 雷蕾, 等. 基于射频法的原油含水率在线测量系统[j]. 油气田地面工程, 2016, 35(8): 78-81
[18] 杜馨, 孙晓荣, 刘翠玲, 等. 原油含水率的红外光谱快速检测技术[j]. 中国测试, 2020, 46(1): 50-55
[19] karimi m a, arsalan m, shamim a. a low cost and pipe conformable microwave-based water-cut sensor[c]. microwave symposium, ieee, 2016.
[20] liu w, jin n, wang d, et al. a parallel-wire microwave resonant sensor for measurement of water holdup in high water-cut oil-in-water flows[j]. flow measurement and instrumentation, 2020, 74: 101760
[21] makeev y v, lifanov a p, sovlukova s. microwave measurement of water content in flowing crude oil[j]. automation and remote control, 2013, 74(1): 157-169
[22] li c, han b, zhang t. free-space reflection method for measuring moisture content and bulk density of particulate materials at microwave frequency[j]. review of scientific instruments, 2015, 86(3): 227-237
[23] 李志茂. 基于微波透射法测量油水两相流分相含率的实验研究[d]. 杭州: 浙江大学, 2006.
[24] 黄芬. 基于微波传输特性的原油含水率的测量方法研究[d]. 西安: 西安电子科技大学, 2015.
[25] 杨如意. 原油含水率微波测量系统设计[d]. 南京: 南京航空航天大学, 2011.
[26] mohan r r, paul b, mridula s, et al. measurement of soil moisture content at microwave frequencies[j]. procedia computer science, 2015, 46: 1238-1245

