基于结构性能的大型贮液箱最优维护时机确定中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>基于结构性能的大型贮液箱最优维护时机确定

基于结构性能的大型贮液箱最优维护时机确定

1667    2023-02-22

免费

全文售价

作者:陈媛1, 周志杰1, 明志超1, 王杰1, 张亮2

作者单位:1. 火箭军工程大学导弹工程学院,陕西 西安 710025;
2. 战略支援部队航天系统部装备部装备保障队,北京 100094


关键词:大型贮液箱;置信规则库;性能评估;最优维护


摘要:

为解决大型贮液箱存在的先验信息缺失、维修策略制定不合理等问题,该文提出一种基于结构性能的大型贮液箱最优维护时机确定方法。首先,利用维纳过程对贮液箱指标监测数据的未来变化趋势进行预测。其次,基于改进的置信规则库推理方法,构建贮液箱结构性能状态评估模型。然后,基于评估结果,在满足结构稳定性要求前提下,以单位时间内平均维护成本最小为目标,确定最优维护时机。最后,以50000 m3的石油储罐为例,进行实验验证,说明所提方法的有效性。


determination of optimal maintenance time based on the structural performance of large liquid tanks
chen yuan1, zhou zhijie1, ming zhichao1, wang jie1, zhang liang2
1. missile engineering institute, rocket force university of engineering, xi’an  710025, china;
2. equipment support team of equipment department of space system department of strategic support force, beijing 100094, china
abstract: to solve the problems of lack of prior information and unreasonable maintenance time of large liquid tanks (llt), a determination of optimal maintenance time based on the structural performance of llt is proposed. firstly, according to the historical monitoring data, the wiener process is used to predict the trend of the monitoring data in the future. secondly, based on the improved reasoning method of belief rule base, the state assessment model of structural performance for llt is constructed. thirdly, based on the assessment results, on the premise of meeting the requirements of structural stability, the optimal maintenance time is determined with the objective of minimizing the expected maintenance cost per unit time. finally, a 50000 m3 oil tank can be used to verify the effectiveness of the proposed method.
keywords: large liquid tanks;belief rule base;performance assessment;optimal maintenance
2023, 49(2):1-7,14  收稿日期: 2021-06-25;收到修改稿日期: 2021-08-09
基金项目: 国家自然科学基金(61833016);陕西省杰出青年科学基金(2020jc-34)
作者简介: 陈媛(1997-),女,江西吉安市人,硕士研究生,专业方向为置信规则库、装备健康管理
参考文献
[1] zou c, zhao q, chen j, et al. natural gas in china: development trend and strategic forecast[j]. natural gas industry b, 2018, 5(4): 380-390
[2] liu w, chen c, chen w, et al. a study of caprolactam storage tank accident through root cause analysis with a computational approach[j]. journal of loss prevention in the process industries, 2017, 50: 80-90
[3] 王婷, 王明飞. 多龄期锈蚀钢结构框架柱力学性能研究[j]. 中国测试, 2021, 47(6): 118-123
[4] 张正新, 胡昌华, 周志杰, 等. 一种基于性能退化建模的设备最优监测时机确定方法[j]. 计算机应用研究, 2012, 29(12): 4564-4566
[5] alfonso j r, robert g b. reliability aspects of corrosion in oil storage tanks[c]. cancun, mexico: 22nd international conference on offshore mechanics and arctic engineering, american society of mechanical engineers, 2003: 1-10.
[6] 韩克江, 田灿, 王新生, 等. 基于gumbel极值分布的大型原油储罐剩余寿命预测[j]. 科学技术与工程, 2012, 12(13): 3211-3215
[7] 韩克江, 帅健, 石磊, 等. 大型原油储罐内检测周期的预测方法[j]. 油气储运, 2013, 32(2): 189-195
[8] 刘涛. rbi风险评估及在线检验技术在石化企业的应用[j]. 石油化工腐蚀与防护, 2019, 36(2): 45-49
[9] yang j b, liu j, wang j, et al. belief rule-base inference methodology using the evidential reasoning approach-rimer[j]. ieee transactions on systems, man & cybernetics: part a, 2006, 36(2): 266-285
[10] li g l, zhou z j, hu c h, et al. a new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base[j]. safety science, 2017, 93: 108-20
[11] zhou z j, feng z c, hu c h, et al. aeronautical relay health state assessment model based on belief rule base with attribute reliability[j]. knowledge-based systems, 2020, 197: 105869
[12] lengvarsky p, pástor m, bocko j. static structural analysis of water tank[j]. american journal of mechanical engineering, 2015, 3(6): 230-234
[13] 王靖宵, 贾月梅, 冀健龙. 摩擦发电微流体传感器特性的有限元仿真研究[j]. 中国测试, 2020, 46(6): 89-94
[14] 姜文仙, 张慧晴. 珠三角区域创新能力评价研究[j]. 科技管理研究, 2019, 39(8): 39-47
[15] 陈雷雨, 周志杰, 唐帅文, 等. 融合多元信息的武器装备性能评估方法[j]. 系统工程与电子技术, 2020, 42(7): 1527-1533
[16] 董昕昊, 周志杰, 胡昌华, 等. 基于证据推理的激光惯组最优维护方法[j]. 测控技术, 2020, 39(12): 63-68
[17] chen y, zhou z j, yang l h, et al. a novel structural safety assessment method of large liquid tank based on the belief rule base and finite element method[j]. proceedings of the institution of mechanical engineers, part o: journal of risk and reliability, 2021, 236(6): 1748006x2110216

网站地图