作者:张瑜, 朱双龙, 任朔, 王方方
作者单位:河南师范大学电子与电气工程学院,河南 新乡 453000
关键词:蒸发波导;数据采集;stm32f103;无线传输
摘要:
获得蒸发波导参数是舰船无线电系统实现超视距作用的关键因素之一。利用微波折射率仪等设备测量蒸发波导参数是目前精度最高的方法。为实现蒸发波导参数的精细测量,进行基于stm32的高速蒸发波导数据采集和传输系统设计。系统首先以stm32为核心对传感器采集的各类数据进行快速整理编辑,然后通过无线通信模块传输数据,以获得蒸发波导的详细参数。另外,为避免数据的丢失,增加实时存储单元。该数据采集和传输系统克服传统数据采集的低便携性、实时性差和有线传输线繁琐的不足,适合长时间、高精度、高频率、低成本的蒸发波导数据采集和通信工作。
design and implementation of evaporation duct high speed data transmission system based on stm32
zhang yu, zhu shuanglong, ren shuo, wang fangfang
school of electronic and electrical engineering, henan normal university, xinxiang 453000, china
abstract: obtaining evaporation waveguide parameters is one of the key factors to realize over-the-horizon function of ship radio system. at present, it is the most accurate method to measure evaporation waveguide parameters by using microwave refractive index meter and other equipment. to realize the precise measurement of evaporation waveguide parameters, a high-speed evaporation waveguide data acquisition and transmission system based on stm32 was designed. at first, the system takes stm32 as the core to quickly sort and edit all kinds of data collected by sensors, and then transmits data through wireless communication module to obtain detailed parameters of evaporation waveguide. in addition, in order to avoid data loss, a real-time storage unit is added. the data acquisition and transmission system overcomes the shortcomings of traditional data acquisition, such as low portability, poor real-time performance and complicated wired transmission lines, and is suitable for long-time, high-precision, high-frequency and low-cost evaporation waveguide data acquisition and communication.
keywords: evaporation waveguide;data acquisition;stm32f103;wireless transmission
2022, 48(8):124-129 收稿日期: 2021-05-07;收到修改稿日期: 2021-08-15
基金项目: 国家自然科学基金(61077037);河南省重点科技攻关计划项目(172102210046)
作者简介: 张瑜(1963-),男,河南沁阳市人,教授,主要从事教学和电磁场与微波技术理论与应用研究工作
参考文献
[1] 张瑜, 秦元基, 韩明硕, 等. 快速调节圆柱形谐振腔谐振频率的实验研究[j]. 中国测试, 2021, 47(5): 6-10
[2] 漆随平, 王东明, 郭颜萍. 海上蒸发波导的预测方法综述[j]. 海洋通报, 2012, 31(3): 347-353
[3] jia w t, zhang w m, zhu j h, et al. the effect of boreal summer intraseasonal oscillation on evaporation duct and electromagnetic propagation over the south china sea[j]. atmosphere, 2020, 11(12): 132-136
[4] zhao w p, li j c, zhao j, et al. research on evaporation duct height prediction based on back propagation neural network[j]. iet microwaves, antennas & propagation, 2020, 14(13): 1547-1554
[5] 刘勇, 张利军, 朱庆林, 等. 基于pj模型的蒸发波导敏感性与雷达探测性能分析[j]. 现代防御技术, 2020, 48(3): 69-74 91
[6] 廖麒翔. 对流层大气波导反演算法研究[d]. 长沙: 国防科技大学, 2019.
[7] 邓在雄, 赵惠清. 数据实时采集与处理系统软件开发中若干问题的研究[j]. 北京化工大学学报(自然科学版), 2004(6): 18-22
[8] 万月. 大气波导测试仪的数据采集系统设计与实现[d]. 新乡: 河南师范大学, 2013.
[9] 韩文, 吴健, 程珍珍, 等. 电场传感器性能改善算法研究[j]. 中国测试, 2021, 47(5): 162-168
[10] li w h, zhou g q, zhou x, et al. collection method of arbitrary laser echo based on stm32[j]. iop conference series: earth and environmental science, 2021, 783(1): 012146
[11] yang j s, shi s y, tang z x. design of multifunctional electronic album based on stm32[j]. journal of physics: conference series, 2021, 1920(1): 012011
[12] 杨振宇, 金杰, 王磊, 等. 大气湿度检测技术及研究进展[c]//2020中国环境科学学会科学技术年会, 2020.
[13] 朱浩. 基于rs485接口的可编程网关开发和应用[j]. 自动化技术与用, 2018, 37(7): 38-44
[14] 李德银, 李建轩. 蒸发波导数据的无线采集处理系统[j]. 舰船电子对抗, 2008, 34(4): 113-116
[15] 王旭东, 花文波, 杨彪. 基于pci总线的便携式通用大容量存储器子卡的设计与实现[j]. 电脑编程技巧与维护, 2020(12): 47-48 93

