ewt-凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>ewt-ssa联合降噪及其在滚刀振动信号分析中的应用

ewt-ssa联合降噪及其在滚刀振动信号分析中的应用

1381    2022-08-17

免费

全文售价

作者:骆春林, 刘其洪, 李伟光

作者单位:华南理工大学机械与汽车工程学院,广东 广州 510640


关键词:滚刀振动信号;经验小波变换;奇异谱分析;斯皮尔曼系数;降噪


摘要:

针对滚刀振动信号中包含大量噪声,特征难以提取的问题,提出一种经验小波变换(ewt)和奇异谱分析(ssa)联合处理的降噪方法。该方法通过对原信号进行ewt分解得到若干个经验模态分量,应用斯皮尔曼系数将经验模态分量分为信号主导分量和噪声主导分量。通过对噪声主导分量利用ssa方法进一步分解,根据奇异值大小筛选出包含信号特征的分量,解决噪声主导分量中信号特征不易提取问题,最后与信号主导分量进行重构,达到信号降噪目的。分别在仿真信号和滚刀振动信号上进行ewt-ssa联合降噪实验,并与经典小波软阈值降噪和eemd相关系数降噪进行效果对比,实验结果表明该方法在保留原始信号特征的前提下有效去除噪声分量,降噪效果明显优于经典小波软阈值降噪和eemd相关系数降噪,其可行性和有效性得到验证。


ewt-ssa joint denoising and its application in the analysis of hob vibration signal
luo chunlin, liu qihong, li weiguang
school of mechanical and automotive engineering, south china university of technology, guangzhou 510640, china
abstract: aiming at the problem that the vibration signal of the hob contains a lot of noise and the features are difficult to extract, a noise reduction method that combines empirical wavelet transform (ewt) and singular spectrum analysis (ssa) is proposed. in this method, several empirical mode components are obtained by ewt decomposition of the original signal, and spearman coefficients are used to divide the empirical mode components into signal dominant components and noise dominant components. the noise dominant component is further decomposed by the ssa method, and the components containing signal features are screened out according to the magnitude of the singular value, which solves the problem of difficult extraction of signal features in the noise dominant component, and finally reconstructs with the signal dominant component to achieve the purpose of signal noise reduction. the ewt-ssa joint noise reduction experiment was carried out on the simulation signal and the hob vibration signal respectively, and the effects were compared with the classical wavelet soft threshold noise reduction and eemd correlation coefficient noise reduction. the test results show that this method is on the premise of retaining the original signal characteristics it effectively removes the noise component, and the noise reduction effect is significantly better than the classic wavelet soft threshold noise reduction and eemd correlation coefficient noise reduction, and its feasibility and effectiveness have been verified.
keywords: hob vibration signal;empirical wavelet transform;singular spectrum analysis;spearman coefficient;denoising
2022, 48(8):109-116  收稿日期: 2021-04-29;收到修改稿日期: 2021-06-23
基金项目: 国家自然科学基金项目(51875216);广东省重点领域研发计划(2019b090918003);广东省自然科学基金项目(2017a050501004);广东省自然资源厅项目(2020030)
作者简介: 骆春林(1997-),男,四川成都市人,硕士研究生,专业方向为故障诊断
参考文献
[1] 李建卓. 匹配追踪算法在振动信号去噪中的应用[j]. 计算机与数字工程, 2013, 41(12): 1918-1919
[2] gilles j. empirical wavelet transform[j]. ieee transactions on signals processing, 2013, 61(16): 3999-4010
[3] 向玲, 李媛媛. 经验小波变换在旋转机械故障诊断中的应用[j]. 动力工程学报, 2015, 35(12): 975-981
[4] chen h, kang j x, chen y c, et al. an improved time- frequency analysis method for hydrocarbon detection based on ewt and set[j]. energies, 2017, 10(8): 1-10
[5] 刘自然, 陈仁权, 颜丙生, 等. 基于ewt和包络谱分析的轴承故障诊断研究[j]. 中国测试, 2018, 44(2): 98-102
[6] 蔡笑风, 刘继方, 李永峰, 等. 基于经验小波变换的干耦合超声检测lamb波信号分析[j]. 中国测试, 2019, 45(1): 139-144
[7] 吴易泽, 张旭. 基于集合经验模态分解和奇异谱分析的曲线光顺算法[j]. 计算机集成制造系统, 2020, 26(12): 3258-3269
[8] 卢德林, 郭兴明. 基于奇异谱分析的心音信号小波包去噪算法研究[j]. 振动与冲击, 2013, 32(18): 63-69
[9] 栗蕴琦. 经验小波变换和支持向量机在滚动轴承故障诊断中的应用研究[d]. 成都:西南交通大学, 2018.
[10] qiao z, liu y, liao y. an improved method of ewt and its application in rolling bearings fault diagnosis[j]. shock and vibration, 2020: 4973941
[11] zechao l, jianming d, jianhui l, et al. a rolling bearing fault diagnosis-optimized scale-space representation for the empirical wavelet transform[j]. shock and vibration, 2018: 1-22
[12] 吴耀春, 赵荣珍, 靳伍银. ewt与加权多邻域粗糙集结合的旋转机械故障特征提取方法[j]. 振动与冲击, 2019, 38(24): 235-242
[13] liang y c. practical method for determining the minimum embedding dimension of a scalar time series[j]. physica d: nonlinear phenomena, 1997, 110(1): 43-50
[14] 董鑫, 李国龙, 何坤, 等. 谱图小波阈值降噪及其在滚刀主轴振动信号分析中的应用[j]. 机械工程学报, 2020, 56(11): 96-107
[15] 陈仁祥, 汤宝平, 吕中亮. 基于相关系数的eemd转子振动信号降噪方法[j]. 振动测试与诊断, 2012, 32(4): 542-546
[16] hao h q, liu m, xiong p, et al. multi-lead model-based ecg signal denoising by guided filter[j]. engineering applications of artificial intelligence, 2019, 79(3): 34-44
[17] 雷涛, 曹华军, 朱利斌, 等. 交变冲击载荷下高速干切滚刀主轴系统振动响应特性研究[j]. 机械工程学报, 2017, 53(11): 113-121
[18] 陈辉. 基于谱峭度和mckd的柔性薄壁轴承故障特征提取[d]. 广州: 华南理工大学, 2019.

网站地图