基于机器视觉的曳引轮磨损检测方法研究中国测试科技资讯平台 -凯发真人

您好,欢迎来到中国测试科技资讯平台!

凯发真人-k8凯发官方网站> 《中国测试》期刊 >本期导读>基于机器视觉的曳引轮磨损检测方法研究

基于机器视觉的曳引轮磨损检测方法研究

1647    2022-06-22

免费

全文售价

作者:刘士兴, 马登科, 刘光柱

作者单位:合肥工业大学电子科学与应用物理学院,安徽 合肥 230009


关键词:曳引轮;融合特征匹配;模拟退火;遮挡补偿


摘要:

为实现电梯曳引轮槽机械磨损的精确测量,设计基于机器视觉的曳引轮磨损检测系统。通过专用夹具将工业相机固定在钢丝绳的内侧,并移动相机对齐每个凹槽收集图像,基于融合特征匹配算法提取目标轮槽。采用最小二乘法作为目标函数,采用模拟退火算法进行阈值迭代,确定图像最佳阈值,以解决检测时光照不均匀造成的边界模糊等问题。根据物理模型结构,建立数学模型以消除不可避免的遮挡误差,并对计算值进行遮挡补偿。实验结果表明:系统测量的均方根误差小于0.05 mm,比传统的塞尺测量更准确,可以精确地测量绳槽的磨损量。


research on detection method of traction sheave wear based on machine vision
liu shixing, ma dengke, liu guangzhu
school of electronic science and applied physics, hefei university of technology, hefei 230009, china
abstract: in order to achieve accurate non-contact measurement of the mechanical wear of the elevator traction sheave grooves, a wear detection system was developed based on machine vision. the industrial camera was fixed on the inner side of the steel wire rope through a special fixture, and the images were collected by aligning each groove. in this paper, target contour is extracted based on fusion feature matching algorithm. the least square method is used as the objective function, and the simulated annealing algorithm is used for threshold iteration to determine the optimal threshold of the image to solve the problem of boundary blur caused by uneven illumination during detection. based on the physical model structure, a mathematical model is established to eliminate the unavoidable occlusion error, and the calculated value is compensated for occlusion. the experimental results show that the root mean square error (rmse) of the system measurement is less than 0.05 mm, which indicates the detection system is more accurate and simpler than the traditional feeler gauge measurement, and can accurately measure the amount of rope groove wear.
keywords: traction sheave;fusion feature matching;simulated annealing;occlusion compensation
2022, 48(6):26-31,63  收稿日期: 2021-01-12;收到修改稿日期: 2021-04-06
基金项目: 安徽省质量技术监督科技计划项目(2018ahqt26)
作者简介: 刘士兴(1969-),男,安徽合肥市人,副教授,硕士生导师,博士,研究方向为光电探测技术、可编程器件
参考文献
[1] 王河, 邹皓, 陈德平. 电梯曳引轮轮槽磨损检验方法分析[j]. 技术与市场, 2017, 24(11): 158-158
[2] 王爱敏, 沈华, 张振华. 曳引式电梯轮槽磨损与检验检测分析[j]. 中国金属通报, 2020(2): 223-224
[3] nakazawa d, watanabe s , fukui d , et al. elevator rope tension analysis with uneven groove wear of sheave[j]. journal of physics: conference series, 2018, 1048(1): 012006
[4] 吴周立, 陈建勋, 林晓明. 电梯曳引轮轮槽磨损状况检验方法及研究[j]. 中国设备工程, 2019(9): 115-116
[5] 李继波, 李文鹏. 电梯曳引轮绳槽磨损量测量仪的研制[j]. 起重运输机械, 2017(1): 71-74
[6] 陈建勋, 吴周立, 林晓明. 电梯曳引轮轮槽磨损状况的非接触检测方法研究[j]. 特种设备安全技术, 2019(5): 45-47
[7] 谢小娟, 杨宁祥, 陈建勋, 等. 基于图像处理的电梯曳引轮轮槽磨损识别方法[j]. 中国安全科学学报, 2019, 29(11): 122-128
[8] 张湘泽. 基于声发射特征的电梯曳引轮磨损识别方法[d]. 沈阳: 沈阳建筑大学, 2017.
[9] 卢荣胜, 吴昂, 张腾达, 等. 自动光学(视觉)检测技术及其在缺陷检测中的应用综述[j]. 光学学报, 2018, 38(8): 23-58
[10] 吕常魁, 徐岩, 罗冰心. 基于游程的连通区域标记两次扫描快速算法[j]. 华南理工大学学报(自然科学版), 2017, 45(7): 84-89
[11] julien o, lucile d, claire s, et al. automated contour detection in spine radiographs and computed tomography reconstructions for forensic comparative identification[j]. forensic science, medicine and pathology, 2020, 16(1): 99-106
[12] 郑敏, 景军锋, 张缓缓, 等. 基于多特征融合的电子布缺陷分类[j]. 控制工程, 2020, 27(1): 98-103
[13] feng s, zhao x l, jubai a, et al. a discriminative point matching algorithm based on local structure consensus constraint[j]. ieee geoscience & remote sensing letters, 2020(99): 1-5
[14] 汪凤林, 周扬, 叶绿, 等. 基于机器视觉的飞轮齿圈缺陷和尺寸检测方法[j]. 中国测试, 2020, 46(5): 31-38
[15] cen w j, luo j r , yu j s , et al. slope stability analysis using genetic simulated annealing algorithm in conjunction with finite element method[j]. ksce journal of civil engineering, 2020, 24(1): 30-37

网站地图