作者:吴红梅
作者单位:杭州职业技术学院信息工程学院, 浙江 杭州 310018
关键词:弹簧缸;密封性测试;失效模型;有限元仿真;疲劳试验
摘要:
由于汽车弹簧缸长期制动造成的气密性衰减,很难动态分析不同摩擦系数的密封圈对腔压泄露的影响。因此,该文利用双参数mooney-rivlin分析法,建立汽车弹簧缸的腔体密封性失效模型。该模型能根据密封圈的摩擦系数,动态计算出弹簧缸的气体泄漏量,通过腔压和泄漏量的比较,判断出密封圈是否失效。利用汽车弹簧缸气密性检测仪对某型弹簧缸进行测试,实验结果表明,当摩擦系数0.1时,密封圈应力分布最佳,腔体泄漏量5 kpa;当摩擦系数0.1时,密封圈应力集中而产生气密性失效,腔体泄漏量超过5 kpa。失效模型的仿真结果与试验结果相同,该失效模型正确有效。
numerical simulation on sealing test model of brake chamber
wu hongmei
college of information engineering, hangzhou vocational and technical college, hangzhou 310018, china
abstract: due to the attenuation of air impermeability, the gas leakiness of a brake chamber cannot be dynamically analyzed by its friction coefficient. therefore, a sealing model of brake chamber is proposed based on the double parameters mooney-rivlin algorithm and the von-mises stress distribute model. the leakage rate, solved by this sealing model under different friction coefficient, is used for evaluating sealing failure of brake chamber. besides, the sealing performance of a brake chamber is detected by a sealing tester of brake chamber to verify this sealing model. the experimental result shows that the leakage is less than 5 kpa when μ≤0.1 and the stress distribution of the seal ring is optimal. however, the leakage is greater than 5 kpa when μ>0.1 by reason of the seal ring failure. it indicates that the sealing model of brake chamber is valid.
keywords: brake chamber;sealing test;failure model;finite element simulation analysis;fatigue test
2016, 42(7): 141-144 收稿日期: 2016-1-16;收到修改稿日期: 2016-2-12
基金项目:
作者简介: 吴红梅(1981-),女,浙江金华市人,讲师,硕士,研究方向为机电工程、应用电子技术。
参考文献
[1] ramarathnam s. modeling an electropneumatic brake system for commercial vehicles[j]. iet electrical systems in transportation,2014,1(1):41-48.
[2] luo z, jiang w s, guo b, et al. analysis of separation test for automatic brake adjuster based on linear radon transformation[j]. mechanical systems and signal processing,2015,51(51):15-33.
[3] 高翔,胡建冬,郭蕊娜,等. 某型飞机蓄压器o型橡胶密封圈失效分析[j]. 教练机,2014,4(1);50-56.
[4] 董作见,吴晓,王忠,等. 基于断裂力学的o型密封圈疲劳性能研究[j]. 润滑与密封,2014,39(11):59-62.
[5] zhao y m. nonlinear dynamic analysis of rotary seal ring considering creep rotation[j]. tribology international, 2015,82(1):101-109.
[6] christoph s, gunther r. development of a force-path prediction model for the assembly process of o-ring type seals[j]. procedia cirp,2014,23(3):223-228.
[7] 任全彬,蔡体敏,王荣桥,等. 橡胶"o"形密封圈结构参数和失效准则研究[j]. 固体火箭技术,2006,29(1):9-14.
[8] 胡琦. 液压伺服动作器o形密封圈实验研究与有限元分析[d]. 哈尔滨:哈尔滨工业大学,2011.
[9] anders e, arne n. non-unique response of mooney-rivlin model in bi-axial membrane stress[j]. computers & structures,2014,144(1):12-22.
[10] rodrigues e, ferreira, boulanger p, et al. superposition of finite-amplitude waves propagating in a principal plane of a deformed mooney-rivlin material[j]. international journal of non-linear mechanics,2012,47(2):144-150.
[11] 制动气室性能要求及台架试验方法:qct 790-2007[s]. 北京:中国标准出版社,2007.

